Python cv2 图像自适应灰度直方图均衡化处理方法

时间:2022-10-01 17:37:57

__author__ = 'administrator'

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import numpy as np
import cv2
 
mri_img = np.load('mri_img.npy')
 
# normalization
mri_max = np.amax(mri_img)
mri_min = np.amin(mri_img)
mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255
mri_img = mri_img.astype('uint8')
 
r, c, h = mri_img.shape
for k in range(h):
 temp = mri_img[:,:,k]
 clahe = cv2.createclahe(cliplimit=2.0, tilegridsize=(8,8))
 img = clahe.apply(temp)
 cv2.imshow('mri', np.concatenate([temp,img], 1))
 cv2.waitkey(0)

均衡化前、后对比效果

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

以上这篇python cv2 图像自适应灰度直方图均衡化处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/yangyangyang20092010/article/details/70705189