kafka集群搭建
下面简单的介绍一下kafka的集群搭建,单个kafka的安装更简单,下面以集群搭建为例子。
我们设置并部署有三个节点的 kafka 集合体,必须在每个节点上遵循下面的步骤来启动 kafka 服务器,kafka集群需要依赖zookeeper集群,上一篇已经说道了zookeeper的搭建,方法请参考:http://www.cnblogs.com/chushiyaoyue/p/5615267.html
1.环境准备
- 测试服务器(2n+1)奇数台
192.168.181.128 centos6.4
192.168.181.129 centos6.4
192.168.181.130 centos6.4
- 下载kafka安装包
http://mirrors.tuna.tsinghua.edu.cn/apache/kafka/0.9.0.1/kafka_2.11-0.9.0.1.tgz
- 修改hosts文件
192.168.181.128 test1
192.168.181.129 test2
192.168.181.130 test3
- 安装jdk,解压安装文件,检查防火墙
2.设计安装目录
- 安装目录:/home/rtmap
- Datadir:/data/kafka/kafkalogs
3.修改配置文件
#进入config目录
cd /home/rtmap/kafka_2.11-0.9.0.0/config
#查看
[root@test1 config]# ll
总用量 64
-rw-r--r--. 1 root root 906 11月 21 2015 connect-console-sink.properties
-rw-r--r--. 1 root root 909 11月 21 2015 connect-console-source.properties
-rw-r--r--. 1 root root 2110 11月 21 2015 connect-distributed.properties
-rw-r--r--. 1 root root 922 11月 21 2015 connect-file-sink.properties
-rw-r--r--. 1 root root 920 11月 21 2015 connect-file-source.properties
-rw-r--r--. 1 root root 1074 11月 21 2015 connect-log4j.properties
-rw-r--r--. 1 root root 2055 11月 21 2015 connect-standalone.properties
-rw-r--r--. 1 root root 1199 11月 21 2015 consumer.properties
-rw-r--r--. 1 root root 4369 11月 21 2015 log4j.properties
-rw-r--r--. 1 root root 2228 11月 21 2015 producer.properties
-rw-r--r--. 1 root root 5675 3月 2 08:27 server.properties
-rw-r--r--. 1 root root 3325 11月 21 2015 test-log4j.properties
-rw-r--r--. 1 root root 1032 11月 21 2015 tools-log4j.properties
-rw-r--r--. 1 root root 1023 11月 21 2015 zookeeper.properties
主要关注:server.properties 这个文件即可,我们可以发现在目录下:
broker.id=0 #当前机器在集群中的唯一标识,和zookeeper的myid性质一样
port=9092 #当前kafka对外提供服务的端口默认是9092
host.name=192.168.181.128 #这个参数默认是关闭的,在0.8.1有个bug,DNS解析问题,失败率的问题。
num.network.threads=3 #这个是borker进行网络处理的线程数
num.io.threads=8 #这个是borker进行I/O处理的线程数
log.dirs=/data/kafka/kafkalogs/ #消息存放的目录,这个目录可以配置为“,”逗号分割的表达式,上面的num.io.threads要大于这个目录的个数这个目录,如果配置多个目录,新创建的topic他把消息持久化的地方是,当前以逗号分割的目录中,那个分区数最少就放那一个
socket.send.buffer.bytes=102400 #发送缓冲区buffer大小,数据不是一下子就发送的,先回存储到缓冲区了到达一定的大小后在发送,能提高性能
socket.receive.buffer.bytes=102400 #kafka接收缓冲区大小,当数据到达一定大小后在序列化到磁盘
socket.request.max.bytes=104857600 #这个参数是向kafka请求消息或者向kafka发送消息的请请求的最大数,这个值不能超过java的堆栈大小
num.partitions=1 #默认的分区数,一个topic默认1个分区数,一般建议等于集群主机数
log.retention.hours=168 #默认消息的最大持久化时间,168小时,7天
message.max.byte=5242880 #消息保存的最大值5M
default.replication.factor=2 #kafka保存消息的副本数,如果一个副本失效了,另一个还可以继续提供服务,建议 集群数n -1个副本
replica.fetch.max.bytes=5242880 #取消息的最大直接数
log.segment.bytes=1073741824 #这个参数是:因为kafka的消息是以追加的形式落地到文件,当超过这个值的时候,kafka会新起一个文件
log.retention.check.interval.ms=300000 #每隔300000毫秒去检查上面配置的log失效时间(log.retention.hours=168 ),到目录查看是否有过期的消息如果有,删除
log.cleaner.enable=false #是否启用log压缩,一般不用启用,启用的话可以提高性能
zookeeper.connect=192.168.181.128:2181,192.168.181.129:2181,192.168.181.130:218 #设置zookeeper的连接端口
实际修改内容:
#broker.id=0 每台服务器的broker.id都不能相同 #hostname
host.name=192.168.181.128 #在log.retention.hours=168 下面新增下面三项
message.max.byte=5242880
default.replication.factor=2
replica.fetch.max.bytes=5242880 #设置zookeeper的连接端口
zookeeper.connect=192.168.181.128:2181,192.168.181.129:2181,192.168.181.130:2181
4.启动kafka集群
1.启动服务
[root@test1 bin]# pwd
/home/rtmap/kafka_2.11-0.9.0.0/bin
[root@test1 bin]# ./kafka-server-start.sh -daemon ../config/server.properties
2.检查服务
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABHgAAACUCAIAAABnWQn+AAAgAElEQVR4nO2dOXIry7GGuR2JHt8724DJgCvparJg0cMaEKLmkARJNuJhCbCBRdDCSp7RA2rIqaYewD/iixv3sNE1ZGVWZdbUL//9739///vfv7z+cPg43u9fI6cP/+k8vB1uX06pjrv5i7RYtien+e7n7dzlAQAAAAAA4NtBBVoAAAAAAAAAAApAoAUAAAAAAAAAlUGgBQAAAAAAAACVQaAFAAAAAAAAAJVBoAW+A9vT/ev6+TZ3MQAAAAAAwHcBgRb4DiDQAgAAAAAAk7KW691fXn+8bD4vCyxVFtuT5eL1riFu+01G4t/wendPb4MPAKwo0Ho73DIa3SKNSikDAAAAAAADXKB1ObxPXpr3/ZX3hndnx3t+31+DWEt8t12pXh/hX9KnvZoGWlou7/vrUNrd+VkisY/jXWqmbxZo0dJAoAUAAAAAMB3rCLQ2n5cwkvk4ei7jLIFW785uD7c2gVYpTC4P0b0dbk8SaHlxOCOK7xNoMdJAoAUAAAAAMB2rCLS2J2Kv4PbkFnL6QOuxLvS2rkBr83lxA62VhB8Ku7McQny/QItIAYEWAAAAAMB0pAVag4/ehRZfxMY26ZwM99RJLaALEoLFK+et04f2bpxvnNT7/ko8taX8+GVWoOVk7UWSluNGzm+YE2tRoOWfvvPQ/W9DvrQkayC3YEGg5R78CwSepu3eI3sbxQTh0JC7k75fZkLxbIFWTsoAAAAAAMBIeqDleo3+as/u/OW82Llxj3Tkp3FqI7vz8MeH23o5vDt/598d3xrc3GhSPzjN8r4/BYnoa2W5gZbjy/rC8epOBlrRu2Tu9IqWcy6LXCrMLbMqyWz4Ftyd6bgxai860Np8Xh5V6KJEKuogtV3UK2v7surkVzAIwp2KdBm5uQjSyE8ZAAAAAACkkhNoOc6Z47oRAYnj6MtPO+iQZggGhgswxvNatkCLzmWsgudqkzQMtJxX+CCTCbScP3oev1j3Ic0+o/f9NWGPqFJmXZKZKC34EFTyilaYciBtSduVUlnbl1Wn235DxkIRpNjVFa3slAEAAAAAgJGMQIuOKCi37OHYyU/7v5DO6BAMuPHV6CzqgRYRhPg+d79KxjuU7QItLwTiV5/IQCvaEGgOtJxzWRmBllBmVZJ5qC04CqpJoMU0q1Iqa/uy6nTbHwyx0FCStECrJGUAAAAAAGCkbqAVPhodPvlp/xc20DrunPvxxp1v9kBLOWclnyyaKNCiLwBsG2h9HFOKbShz/hmt6ERcGL8pJ+XyzmgRWwedZNVAiy+VtX01UZBmGJ8eTAm0ylIGAAAAAABGVrGi1Qda18+3V/9/HtFFwooWC/1FrOdZ0eKv9zCJKGGVJuvbYgy2FswLtMJDTX5dEle0MmVFq9Ntv6FPSUXKlr6iVZIyAAAAAAAwUi3Qok7OON6t/NRJgQm0xh+7/2O53j3tXm8iIJwm0GIc9/orWs52Qeee96wyU2elJElmYmrBnEBLLP+rrO1KqdJk5ROee4zPekWtn3xGKztlAAAAAABgpF6gRd8r+Pix/JT9o791sFsq6S/O9lxJNtqJrjQIy8zcdqCnbP5BTOCIb0/MXrumgZZz/WCFMhskmYncgg9BFZ/RovJlm1UslbV9KXzRdXsUg/sMh38OK4fpgVZuygAAAAAAwEjNQOs12ItFb4Rjn77+eAm3t523j5Wr0S9kL12I33VrxJ088d+ivWEyZWYnni10CT7fRFztEKfM3XeXFGg557JyAi2+zDZJ5iK14FCXjO9oEUetbJdhKKVSZSUQxqjhPszg413UjSbGDxZnpAwAAAAAAIykBVpz4FzeANKwnwuaPrUZRBFqURdXxCepKoSIq5YVAAAAAACowPIDrdSjRGAEgZZX+CDQovb+ZewCfT5ZAQAAAACACqwg0IrXGTafF6xxWeWGQGsovLqi1W+lq1DHVcsKAAAAAABUgAu0ki7+noDgQFSNe8OfFv+AEAKtofBEcO5++Kumtq9aVgAAAAAAoAJUoAUAAAAAAAAAoAAEWgAAAAAAAABQGQRaAAAAAAAAAFAZBFoAAAAAAAAAUBkEWgAAAAAAAABQGQRaAAAAAAAAAFAZBFoAfFfe91fy1nuwAvqvOCzj8xsAAACelO6bT87HbL2/c19dkp/KKT8X0wZa63Ts+u/YcorifovJVRf/c2SRMvlfBiO/ucSlvGAUWZVQIA2uVMPfe3I1c/hwWdSIraRRyY42n5ewbK7SLkfl5FKVlVlqo/yUJ7DudQRauzNhWeQfs5GtrMuroko/X42+G3ILNmzfj+P9fjm8u398O9xqfnFR1o0SvfKe1ihwu1boqun9rLY3nyUr/wOnyzBeq6w0Ae7Okp8jPW0SaGnjbwM/R9RYBFoyH8f7/ev6uT3caEXp5Ej7OkSvOuJ3r53L5WuDlPIy0WRVQr407KXqf5msnI9e1W3BltKoZEfRR5w/jo6Qt6dljARKqUrKLLdRfsrPaN35dO6FI95ukKviXMot2Ieyzt/f99cK+T5fjb4bcgs2a9+mgZasG0V6RQikRt/VqhX6EdnprocxusZAnC+r7YmIuzgXcSJqySo/0KqPNv628nMkjUWgJZe2k9ob74rxdiI/9dmdfZNLeXcRqLIqIVsaaaV6O9zSTa43Wr8PbSqNH5XsKJRqMAwE/dFcyKUqKLPSRjWlsXrrLiT2n6oMbEoLtjG9Z63Rd0NuwUbt2zDQEnWjTK8aesltWmF3/rqfj6eHqLen++V0jrZvVJezIqtoTKHm4CamlqyWFGiRubsVbObn8BobBlqbz8v9tt+4S2/kGuKdiXrpp/5Cnss6ZuP47kkof4o71S3gDo1deTvBAmRVnGCpNMyBFrPKzEQ1o9FG1psvjWGhyTElTzFUOzLtSYsqG3U3/czWvHool8pYZmWtkmqjOin3VLRub1MKNSHq74YNeuBQD4Pxj3m3AuMKXhBz9sNNr+rH3aDhvUiJXSXkhkm2BdtN6mXWqEO30BlqpJSK32zD+wwmrctKuWELWp4amiPaL/DDFmjltYJVN9L1qnEw0KIVduev+3nb/bf/zXkb7JNn+zq5zymSVewkhNEj3wMbwoMszdFlZTlnlRdoqSlXOjvjjb+N/RxOY6lAyx3J/Llz/+XOaB9pyU/j1NYD1T29769yHJy9oqWmvGhqB1p1pKGXavN5IdsrXlv3H3VpVg603K6HGGMEOwpGgvf9ifxZJNWg+pvPy/28z1niq4pcKmOZhRbk2qhSyu7P6ls3obEfR0cr/J0MxLydr7TCu+U4Q6art5vPy/12ud72m06lb5dhiOqzDo4QMFsuiRZkPbO5a2Sz0MlrJJfKU55w5V/yGQxal5lysxY0PdVtPyvQym0Fs26k61XrfQ31W2EQ6cexq+nuPMZIDxsU+jqhzymTlRZoSaXSAq1MzTHIyhN11UBLfmr0ZAy4rdbcz2E0lg60HF1xWoXo5pzml586hXiuQMtbZPBsLLgMQ2jIYNevmvKiaRRoFUqDL5XTTKbQxf87u4ctXxqRjxtbDW9HXLgYsDtTk8eud3vbb6ifTYxcKmuZ01e0KqX8aKwW1q22tf8DcmcO+7pRkRJLS2pdV/1H8YK553GYJM5tsy04xS67vBrZBDt1jcRS0eP4qLSSz6BoXUnKrVrQ+LTFilZuK9h1I1mvoiaoT+1WGEX6drh1u/qPO1r4bhbeI6bPKZRVmj9M9N58oFWkOTZZTRxoSTVyV7o8hGUxt/tt6+eQGksGWrREqJo/Oj75qUWxFgy74B4t6DFmFh+gDBMPJyesKS+O2g5BHWkYStW1kdXeqIOtFQOteN7L2EFH4uJqGrw+Gv7Y+7wuKdAiS1WpzFKgVSyNhtatu+z+eOn/XvNZKx8kGwNLL01nuHkoeTQGObd10Rs8NPfRnfOqtgkqt0YWC52+RkKpmFWpsQMRfAZF68pSbtSCtqcq+Sta6a1g141kvWofaFVvhbfDrZf85vNyvV2cfeZMIsQjss8plBXlM1h7YNOKVp7mGGU1y4pW8RgUjr/t/RxaY1MDLWo9kZqGDJ72f3m6QEvaFEFIj9v0Ilz+pqe8MJoEWsXSsJXKvE2C9gVbBVr0Pn5lpzi/jkqaavfHg9P7VJ8/zkAuVaUys4FWpZRbWTc7t+VN8jk/cNWG2MEovmurKevhdRPPt0vwyBZojYMuZ0fGDVFJcm5Zo6wzWs1rZP9Oif+6Eg4JWleYcpsWND1liI5Q+qZUckZLlJVZN5L1qjjQmr4VnBDX1TdP+Ia+jupzymQVXu8ejeBCqQrOaEmaY5GVW/cJAy2hRom6F27tLhrZM/UZK1p24apntMRj7typTWbAS0h5WUxwRitDGnUDLf5SCjJGmnJFy2E44RDkzjhn3CHgBVyGwZaqTpn59eqylFtbd9TlRhWJxkt+Xkx/t4BxNyw7v6iuaF3PR/6gORcqt5uuKqyRV0jq0fQ14kul9YpqOMRqXXHKLVrQ8NQA2UVbAq2sVjDrRrpetb2CpUUrUGuJnvAtfR3d55TJSrZWuVQJd+WlaI4qqwczBFpcjWxbB4X7q5r5OazGJgRalIvABMRcKz5ToEV0kYzWPgQb7wPml0HMKS+M6mcJqkjDVCp6L5ZppGm5ohVbltmOyPsSGAc6kmrrY9Bmacgf+9LLnH5GqzzlCaw7bFz6gyFk6z92jCS8m4u3N9LfoGsISx6tw++xZFuw0YBaViOxEWeqkVgqRT/1cIjTuvKUG7Sg+tSplLKtIHya2JOntIJRNzL0quHhwDatIAQPX6cPS18n9DklshKtVSlVOGrIG87NmqPJKmyseQKtqEZW1aKk3dDPETQ2JdCi7xV8/Fh+yv9x+dDFDqY3BHWJj3H3Mbptn+G8XyGoIqsSakjDUCpm4LTdLNcu0CJ3crPJ9rcGuT+Lb2QSjx1r13tMjVwqS5kzbh0sTHka647GHk9VhllAYgb9ej5eyQ0wyrtZRB6S2xmqYQnRCrb1n9cfw+SlfpBy0hppFjpHjbRSyXuiDOEQp3XlKddvQeWpIzGpV6EjqKBZCQ8quxVsupGlV3GQU+WDxa1agQkeHlGu0tcpfU6+rGRrVUoV38UaDCJZmqPKKhD1dIGWrZ+kSRl/6/k5osamBVqvo2YTu6T0pw+RKb9ZCMwOsWgBt4e8+rmHP2rJLX3yKS8Sg6xKyJSGXKrgqXBSNnVFq0Qa6k5uKgsu60BWpm8SLM825VKpZaZbMNG6E1KeyLqZ5Uon2fc959pyc8Pyu+l0oiB7v/FSLzYsIcZL7+CExcrCtih2EItqRChePA8ydY3UUkXq4UvAEg6xWleccu0WVNo3KHbaitaPl9fAMaBn0HJaQdSNcr3yn1YYGpq1Aif58AwS3ddpfU6JrDSfXumBnUY8b6OhPEtzDLKijx163xVo8lSvkaJaMcz4W3PTIKuxYaAFAJiVhktJs98iCCqSupsCAAAAABODQAuARdEs0FrrCUlAs6odxQAAAMB3BIEWAItiKYejwOJ4319HxWh7GxgAAAAAKoBAC4BFgUALsIzHoBFlAQAAAMsHgRYAAAAAAAAAVAaBFgAAAAAAAABUBoEWAAAAAAAAAFQGgRYAAAAAAAAAVAaBFgAAAAAAAABUBoEWAAAAAAAAAFQGgdaT8nG837/ut/2mWprateNdjj2L+Y6qpVQlsqov5yWwPd2/7vev08fsJZlVAtNcsv9xvN8vh3f3n8uzo+fjCeTsfYJ8MZ+FWOOH0b0yvx1uNbp0QsEqpQyWQ4YNVvEZ2llZkPJC+smVW+iSAq1c1XG/LUN8XsaT5lctt3h3JvIa/yg/Lco6qg7tDU8faHnVTDPIoAWlehW117SBlqbPnT5wOuk9reI/GTVnbOvnCLQye5X5Aq2BDDtapCTnwd4DL07OZjafF6fkSwm0/FIZWIBe+WWu4WzR3xNvGmi9HW5FQ8YwCtNtJz9VRZHnehV9NrAgX/u7OTZYwzdLtrLilOftJ1djoUxc+gyBliI+xo8ppnNGHc3rRNybmfy0sILR/PcUk2StA622NjxDNyHo8/v+GqjH+/76kC2hPBVintk0Z1YQaM0sybmw9sCLk3NKBZ3mWEigFZTKwPx6FZS5ghvHKFW7QOvtcHNavxtf7MrQe03bw40qtvzUkPIweG1PKSOOL8NE9S7IN+XduWww3cqKU561n1yHhXYTeY6rtj0NST1doBVLqlWgRUVWYb7806JM/erQoXl1EGglwurzmzxitSrqbJozKwi0ZpbkfNh64MXJOaF2rtosI9DKGG1n16uwzJXcOCKF6bYO7s5f1oZ431/dfVOBLchPFSKd9GIYtVH8XyaoVkG+Se/OZYNtfVo65Tn7yVVYqDi7EQZam8/L/bbfuMvQUa7eRq8gXXbJdQhJnR8MuusvebvkqKw/tSOqTjljCEv2a/LTUVz8GEPNLhDV8X0IdU9tv5xiaFzv9aETcV4nex/WIPnleCnQIhZe3I1tgl4ZSmXYf8xqO/uups9yo6dORtrRNMfbrHgnNJbRDXoADgTO65UO/S7rn3UqsS3rVWJtj+xX3F6i1DfcxpkSaMnbWkTrVp7S6P2zOGoYHJeSTT4ieg9slHP0A2q3M6ftRArSGPrDMgMSDXOpGhuU9rbf9E+Pu6Edo40hahvFpRJ0Q9ErS6nk0coyLlBlDpytoZxOrdXezObG5aRspEsncR+EHEqlB1qRpfdDjKEH3nxeQgV+319zgzR7vinvWmyQ7+hCSZZobC2klFv0k7bxaCUWmhxouW0cejNdxt4GpIc2eDoalLh3jseSEc1WY2aLsM+WgZarKETJ5aejDVsXprnqmDxdt40eab7vT/5oGq6DB2v3YQuaHURJN5QVrU4nx4L567NlpVKeitqupszoszLXmDD3lohZc14ZO2J1gyiz715LeqUXm3mX2eQQjMclK1pCfyXqs1zf0AdKWtHS8pWtW3qqwktSHDW0QEuuUSFaD8zJ2TfSsB/wrKPLIuzN2KeWXkUbF0inU9FYoUabz8v9drne9puu4W6XITQlDZxvI8oV1jwKVq8spSofragyexWMtgNJ+UZzVYHu5aecSsKKVqiZ1QKtYBDZfF7u573VwJlpQUtPXpJvwrtWGzT27QYPmc23EmLK1ftJ63i0GgvtW5BUUTrQcpL2Mibcr0BR3AHVExC9Y96rAzeQu1EvFxk7UbVyGUbthft+IGGSlZ9WWtESbICcYLD2v/6PoxaUAgmqE2F1g5z28Ao52nMQdJWVqo6sEgMtZbjKmom0YdYcS90J3TDv101SQv5dd6LLsZQg66JAK+hh/Pry+qzKynKINNeOssRu6WO1QIsZNeRAK02SuQojdfu2KT+3nGGZ5cMk1NKupvzaihY1HStqrFgjp/kehuxMflnbiJwklj0KQa+0UsnqnTIuhGV+lJDwtJR8JVFUSdlEfAbYRItAq//9sLDJSSYmGFOoVdYG+drfNdlgqo8ke8iSalVATrl2P5niX63GQsdoOUycDLRESxNjhji+t85r0s2WDjGDGD2tudN03P9Aaoz8VKV+oDWEnbbyyM4lsyOZyFfRDcsZLUeDlTKYS6U8tU6uFwVa7ixA6PTUpmqgFaTm/14TXckis/Puo690T+NUDLS4/krTZ6m+5rMHGXakWHeS7ccogRZnXFUlmYzeA8dyppRfCh1TAq0aS3Z0Q0hylmtExlSPPxrbSIqXxL5df5EqVUzGaCV00bf9weBpRfk6jc67cSUpG+h1Pn0QaRVojRELLxkSZ9C/Xw4f1p68JF/ru0YbTPBGbGfDJrvVPaJ2P2kbj1ZpoYSzmhRoiUf9wlMHQU5TBVpkyqFy2PugaB85dSbtersQj9SnDNziZt+ihVsHf/iz1+RUAb2yFLc+vaOXcxB53bBdhvHYrC/rpLlUytPiyz8Stg6Ss8t58BpbuHVQ0g2/stxaP79imVYjd8vT/bj78bI7f13Px+s4QNrWYUT08EDQZ6m+9JUkCYGWmG+LM1q6JAsDLaVGedru5CX3wIwDQXWn5M6OaGu++LTCcXlG2mqgxdbIEmipbcTpQMtAq3S0YsrmJivPn7I/k9y4spSNFpHlR+UFWqwNduI9OBFL+WUDlpGxJF/ju1YbTPBGTIFWu2vD1JSr95OPP/Lj0Zot1LPEpitaiWpUsnXQXhL9nLGdcbWXnEOSnxogBcJdaZB+bfGwYS8Yt8zbpYpWtOKS6Cta1/MxstXVrWiRoZRT5pr66WPWnFci0JJ1Y5ADvb1Hf5dHfPfjONjX5fD+drh9nT68mUihFTRS12GSylwUaBm7kci6xacVtg7WWtGqiKkHTp+pjebCfAsSn5avaHE2O+WKlr1U7QKt8tGKK/MoGfKUlKk30zYm5acsk3DrA0GTyzCIi6yyipewkbIkX9O7ZhusvKJVYZqGQU+5ej8ZNa5BJmEuy7ZQJ7ZMCrRkb1Xe8jHdilb+QYVEvE2c0ZZF+akrBPkCOjXQ4tZA1EArlEY85SAPXcIeYspghJbVBuOHfkcbZ1PODyQqtkWA0s/Ea/H4rjx9PDNi1pxQMXTdcP/ydrgRh92Vd7mzNPK77/trt6Vk9BfP292Z0AdN95jd9uLJooR7I6PTMuGRlZQzWvYesnJPmBlohXO68WU2ja72NvXA/NkDdrOcPLOuzbubehVhXGCHdlFjxRppIY2hjXiHo1WglTpaxRJgy+w4i/FZA1tvpp4AyU5ZQI2ytPOKtQMt+jwqc12KMvtA+9xC752br+HdPBsMWyo90NL0QZak9NSgaZX7Sbp4pinI1Vio07OlBVrkib3gSgNGshYVrOFiiqFLV8I64zp92ZSnZOxTt7GFLsYQaAk14oIH/lyyFwAMcwzc0BVHC1K+8o44Wev8dwMNLCqV9lTSdkPKvD67Z4riWlD381SY9TdrzivR68m68ajv9Xy8kutmyrvjtuakd/u3PKMLKyX3KmK+fH+l93VsmV2j4yTG6pVsR6J1K08NyBtNTcY1SMMoyQJsPTAnZ+o2La7PoVpfmhvWexV+XBBaTdFYoUbqJj2tjSRdMuxWoPXKEv4VjFZCmf1H4RKHpTczuHG5KXP0v9cVT0izeqBFjd1hCdVSkatMyrsl+Wrv2m0wyRtRPWS1x5YlKTw1jQW1+0l1PFqbhXoXEo7S6J+mBlrj+8xqYLifO3U9REzcUh76uD/7NJdOa0ln8XJ4l5+G4kpf0XJrRKp+RHR7T/T3KPFbd69u6JqP0EEjm6+gG2HKritGjB/eYS3n3GF6qfQy8wppeFfW57DkzEWxdkPQ0DTHhZleYnXDa0dm5bbBu8FyELdDTOpVsla0FH3W6vto3NPHsC43PC2xI8W6lacWaEnaVqSHV+i1hbq9tN4Dq3L2fqAMc19B4CQ91RRyTEH/dEGixnI1MpyGEttIv3JT9c4JgeilkqxMGRfEMoceXrivydCbmdy4rJRFhY+J93pZDma7GiI/NeBWit1cSojLVVf5yD2/SpOTr/Kuru2s1ol9jma/hgWizBUt/Vb3Nv2kPB6t0EJDP9ZJJwy0AFgV7XYtf2sq7rAF4KkIl6NfvJlO+WkZ7W52frpS6bPpyyszWAFzac5ct7rnU9YTPpmFItACqwaBVhOM59MA+G5Q++gee2bkp0VZt7vZ+flKJY8LCy0zWDxzac58t7pnU9QTPp2FItACqwaBViXe99dRjO1uPgRg7UQztd72ZvkpmAiMCwDMCnpCBwRaYNVgQK2Gu8MYURYALNFt+PH1uexTMAXPNS5wnzK7R+flAFgO6AkHEGgBAAAAAAAAQGUQaAEAAAAAAABAZRBoAQAAAAAAAEBlEGgBAAAAAAAAQGUQaAEAAAAAAABAZRBoAQAAAAAAAEBlVhVodZecPtHnoptIw7sKFt+cLZAkAMtkjRq7xjID8L3Ynr73NdwAtMALtHZn4hM65B/T6Q34QcaImz1Ua9+Z7urIFcx76n/UtegTAYVfv9aksTtPF2jJmgO9Wo1eyVH6E32vHRoriCVFY98ON+7zPr7+NAq0vo3GVugZwHNTQdufKNCa3vZhoYAhWNHqzMwZrqKvO+cSfECwy2iqD+0JJtd/Us2p8vv+GpbTE0hvPB9Hr/wZbkTjjmDKQEvTHOjVCvSqc6OdsWF7CvJ9JrcVGks9ytFYS+Jt+F4aW94zgOfmmbR9jdKAhQKGaOtg7G3UUZToS+3duD7Nt9tZk+umY9loRIpVAqMaRJdg2E8VaGmaA70yNs1cemWR25MN5NDYBwUaqyfesC7fSGPLewbw3DyTtq9RGrBQwECc0RqnCXdnZqpV0Z7tiXgauRe+77L5vNxv+427ESV2euj9IUN2zm+GOU5+W0tXErki8kAeGxXnq4XV0Uo1CkTehMPtlvHakXraT13nblvikTUHelVLrxjdMOkVo5NyqYo0tm+CPt/jbkhtkI8gZ2jsGjTW/xmRCF9mTTegsYEYtREnqFQgHKYhTK1gaHqqvpG2fxwdcRkkyWApMz+G6vlK42/4NPoNo7FF2l5i3RreluC719cpZSYWbbzNh0pvVlFWtcZBWCgstL6FkpdhOE1CNmRvlqx25roXbsmYMZsKHsYzD/3fid9IqfGbdjyFsxiVPyvsvf52uEUSE2ZcPo7O36NNO5I0tKeBR/W+P1WcbpE1B3pVSa8U3RD1itfJvr5S352lsZvPy/12ud72m+7122UIXbofkHION2BAY5ersRb1YMqj6QY0NmgFsWfo/+mVZGw1v5DeL/VW0AvG1Vd34xSNZbBoDt9PavmKfezm8/KQZNdFRFMhpMZW0fYM607Cq52hzF1/NWYa7OZVerMCWQn6rEtD9c3ygIUGigQLHf6fvnWwNw9O+arM4/pm0OXojOW09vPuRRitem4BbXLKbpmoSKpRRYNxVF9DqbiSEG5QRqDFJVULWXOgV8V6ZdANVq9UnXTuaSDbKEtjnfo+Il3m05YAABuMSURBVIrN58V3W/2jQWELQmMXrLFm9aADLVU3oLGP1pR6BilfQg4P2Wr1TRBdhMWNEzVW10lTmf1CpuVLvOvUyNdqSWPLtD3butMgAi1NzmOEEARdr0pvViArUZ81aRh8szxgoWGmsND+KRlojWuveaOFxb0gd0PpSsO6F6yicEr8Qi5A9YTKTSEbFaEWkVjs3SKVFyMN7WlfzUaeq6w50KtivbL8XtzBpejkWHGnwHrKYqnIfkrqvIK/QGMpFqSxZvVgAi1eN6CxTAkpkUoT85Sn9fi9Vl9Lwbj6Gtw4WWMZksvsSS8xX/FdfsI71Ngybc+27jSoQEuVM2uAWotkykrWZ0Ua1l4lHVgo3fSwUDLQ6qZpbxdi3OKJtvmOdPV3TPH+FU8Dz+FekBtmyFkEtWk7HH/F22vrYJpxeXE8vECMqjQMT/PPD0SlonYYs5oDvSrXK4tumI7K8I3o52KeGmBLle62vh1u1HUR0NhlaqxJPegyWwY2aKzTmkLPEJdKUarduZIbJ9V3RjdO6CfVfKU+ltiYFMbYtMaWafuSA62x8OQOGinQypOVrM+KNNJ6FVgoLLSChcaB1rj+1dckeUWV1m9JyexKU9e9oBwIJzV5XxB38NF5VxGd/QawiitaUfUTbFVB1hzoVQ29suhGwkyeLnDb1IBUqtL1gUiw0NjXRWmsrh5smdNnEPUCPK3GWnqGWebLpfrO5cbJ/aScr9LHhjMp5vKXafuSA63t6f51PR/jy2kSV7Sssqq9olUJWKi5Bb+bhYaBlneWMT5G5rzP2vN63It4347i1IZC8AzDd1YMi9FcqWJ3oU2g9Uqbdyay5kCv6uiVRTfEUiUMw3E6WRqb7LaKO+ahsU7xlqGxeuJsmS26AY2NS+ik/MhX6vCJEpo3zPjZqQt0fn3DtT7/sgSTG0fmq5RZ6SfFfOV3lfM8ksaWaXuFQMvSgumB1qNziL5rJ/dmBbIS9VmTRqWNgjGw0MQW/D4W6gdakT/RSTBIWrlra4HuheAodKuBj9f91KgbS/qUfaOKBWXYb8OVynN6hhmIOoHW7qyfs89B1hzoVTW9sugGWypJJ71rfMZEjClLpUp0W0OPHxq7dI1V6iuVWXUgoLF+A0kjjrMGS7QRdaeZK2TTqgU5Esn1jW+oS3Tj6HxNbcT2k4ZZfPu7PoLGFml7oXWLLRgVMiHQiueX3QLIvVmJrAR9VqVh8M2ygIXCQg2BVicvaukz+OPk87j0sQfu7hp6gc/f0xlv/HBg1Mh/MdyvyfsuD+IOjimV+2J/1yS/MOpJQ3ka5ljnCxKy5kCvquqVqBt6qXidHDtZUTeSNdbU4TowVzVAY5eqsUp9pTKbHAhoLC0HUkmExvUbwnlUPF8u19d5et4S93S1mC8X21fPV+5jiaMaflswGlum7eXWXX9Fq0+QGF/iCMGo1Qmy4vTZJA3dN4OFwkKrWSh9vTsAAEyCEngAsDCgsd+YcOH3hdp2u2Iq7s0GYAYWaaEItAAAMwK3FawLaOz3hdo7ZDvBuBISPoMLwPJYpoUi0AIAzAjcVrAuoLHfmGi+nNg+ty7e91d/P22TiyIAmIZFWigCLQDAjMBtBesCGvu9cT9JdI+PMq4P96wjoiywepZnoQi0AAAAAAAAAKAyCLQAAAAAAAAAoDIItAAAAAAAAACgMgi0AAAAAAAAAKAyCLQAAAAAAAAAoDIItAAAAAAAAACgMlGg1V1C34Pv1oFvwva0jGtAn5MqvUpGIuvrzd4OtxrfsCcqXinl9cr543i/Xw7vVMkbiaXjfX993Jq9mKvhvVKtBK/M67QUMAsZNlilZ2hnZUHKq+iBk5i/RjV9QnZFa0EfCPckDm8YRFTozp4o0FqwC5Xfq5R9SXM9vVkNJ4+W1RTu44LkTItlhkBr83lxZLKUQMsvlYEF9Cp+mVdqKW+Hm2P+6ZowfPOKbjv5qSqKnsS6F32GqyBf+7s5NlijZ0i2suKUF90Dc20nul4ta9R7fYwyfMdAyxkgJ5iDBOtiAU7AgliwNLJ7lcLuaD29WQUnj6ksAi0q0GrO9uQZ40ICraBUBubvVYIyr9FS3g43p/W7z6ralaEPC7eHG1Vs+akh5cGh3J5S/CtfhonqXZBvyrtz2WC6lRWnvOge2MXs1ber0e6cP9+RygoDrR+l09vg2ZjfCVgSC5ZGUaBV4Pqspzer5D4SKSDQmiPQCjNdRqCVIYrZe5WwzOu2lEcBjA3xvr+6OxsDK5OfKkQ66cUwaqP4v0xQrYJ8k96dywbbdTh8yovugeUqMF59qxr1CjORMqQHWt00DLdcW7IQbG8SagLDXb8OBcds99x8Xu63/aZ/etwNy/oJwwkrDbkjGCYknIIZFygtZfZE4TWini//bvw0+g3T+iY5s5ojlNnfhuFis5zHlEbPQ82UMhMTMN5Cc/+6W8LAHGrJKthLo0qjxEJl25efPgReOdCSNVbJd3G9WeDkDW0aaIhYX5v7mJOyqZnIF8UN90qvYtArUdq0getFku3XhL+CMbb1eetUitnNmDdamTQ2LpVQX6VXaT0e8WVet6W46STuTZJDqfRAKwpR+mHRMIZuPi+hAr/vr7lBmj3flHctNhjHilzjlmhsLaSUF9cDSy2oe/WtavTwz0NHXfAJjZCRSGKgFQSd7/tT1Mt7TnCVViGaJOhNun96g+io/f6kkffLzeflfrtcb/tNN113u5w+UnxBSRp6oOW2vT1Tvcwfx3CVPFjZF/KV3vV71c723PblW99SZl5zDLKqMdsajBlqmTtzGjPt7HPUutHY+r9QR1fzZCXosy6NEgs12D77dCA10Ip6vR5XkoLGKvkusTfzMgqUSq6vJqv8lO2QcpY11tKrqHpFEnqxzDQwWWbFfo0QTqfSmxWNVkaNpVxhvb6MBBqMR5RnQ5R53ZZCNbeRyoEWMfCd99bujnGXLZZSkm/Cu1YbNPYMZs/NHnCmIqa8qB44UXNo1a1fIy9NaUWLmEdQYCORtEBLzDgqcS1VowbIyOVlSkUMD49yOiPxI5i2n19MkwYRaIVrQRZZpZbZL2RavsS7YejPb852Wl8rs6w5hjI3CrQ0OY/WHgRdr7GT5w3eBbIS9VmTRpGFyp2OsUvigmTK7/F+Ztw6yBVjPb3ZQ08ID89WX3WePjtlFdskiCtbuVfJLMaYcrTakxZo0fZr01imIcjezPMJckcrq8aS6iH2V1zZXgylkvUqkgaTC1XmdVvKWNn0IK1FoOW4UmPFTfNKwSpEwp6gknzt75psUNA6OtDSPajCve4CcspL6oFFNK++XY0IV7xSoCX8PmdFi06LULhKZwHNromt5o/fk6NUwkUxgjQsgVbW7uTkMnvSS8xXfJefTA1bXymzojmGMrcKtFQ5j/Nb1FYcqUUyZSXrsyKNQguVtF17SupMCtZxK8WZXnJvdjB4eFJqvPtYkrKpmXw5axprGhRzRnrz6RE+0MrfEvb6gzNDqTcrGq2MGivFS2J99RdrjEek30NnvW5LGWOS9LmbVoHWGLHwkiFxBsH75fBhHYtL8rW+a7RBxttmAy3Vg5rsVveIBfXAMgWBVlmNgqcVAy0pEql3RivcDU87oEopyReVRUZVUuxEY2mgJUhjzkAr3lVvD7SEd6kFWa+N2Na3uAi85iw50BoLn+KoFchK1mdFGqUWuswzWpLG6vkurjdzXyS7eL2+kvtYlrKpmYhBUdJYqVcx6xUBfdh6ukCLSUENtHJHK5vGcvVqGWiljEfc+TGibKu2lPTT4OG7qYEW2yN14j04EUvRTmnzyn9JvsZ3rTbInHrKDrQqTNOIFRdSXlAPPAo2ZxxsVSN6rrxOoCUllX/r4LCrW1jTqAR3bK6v0nwrWoI0Zgu0ImVNWNGS3422tpvLnz4Xy7U1k9esK1rX8zHumxJXtKyyqr2iVSIrtn8QntbeOqhorJSvXOb5ezPy7IepvtqGqPyUVdJnH8VeJUXrdDnXCrRMGssNulOuaMWwrkCzQCtxPDKvNqzaUhJufSBochmGMk1sJsE3LcnX9K7ZBiuvaOVLT0NPeUE9sN6CwjjYqEb81T5U1rOuaLHlqLS1xtAkwYZyqajMUUjTlrZAvbRQ3pdGOEfi7/a2z4sIkzRUmeMJCXugJb+rzFRJra/JWdacCoGWpQXTA63HkBZv5RcdlwJZifqsScNkoVnabn1aeUVL0fa0fJfRm8VngZxi2+qrnjzJTlnVDS6QZjU28eQbqVd0qcKUqWtjeN0onZNmnW+9B84drQway4cErQKt1PEolgBb5kVbioAaZWlWVjvQok8zmrwRMinGYaXPSuXma3g3zwbDlkoPtDR9kCUpPTVo2iw9cA6aVz9VjXJWtLg2EtyMtEBrd5bOy3KSqtskXS7ESTh/kkm8dbD/pX3Vgtt4IEgjuq4jNdCi87UMt/4S6pc10Ep9l1I+svVVOYuaY5GVPLqwLRgVMiHQ8sscaqDsuJTIStBnVRoGC83XdukkPWUUSTAukayxSr6L7M38YoQTt6b66u5jZsq6HZlviOJX/lPaSCyV++O3w61beZ4m0BKmNpXerGS00jRW3foh15fuVaqOR96PtTIv2VJY+t9LixKqlVUPtKixLCyhYQwlVpmUd0vy1d6122CsdY56JAda6u5HWZLCU9O+yjl64Cx0r75VjURliHUsbgihjdhIJAy0wkW3juhWmejvnto51Ip93TTJTsQvmC84r1LOo+IVLVkaztPzlrhJr8WKViCuW3frrvmMlvQueQzAbwum9U1yZjXHOP8kKUD1FS1ivPQPa+mOS4GsOH02SUOz0AraHj3VehUd9oyWqLEr7M3oeM9m3bKsKqQszuRJ7StprNKraG0kaew4In6dPrqZTqtuFAVa0pSq3psVjVaCxooTvbb6Er1KhfHIgby6gynzoi2FIawv2Qkw+szsenK3HLNPDbiVYjeXKrYvapehA0/JV3lX13ZW68SeQbNfw3JK5oqWfqv7bD1wDppX37JGLjVXtAhxDSmzK1oAeHS6G+9srmV4c1NtTRwAYOQZe5V2Nzs/Xan02fTllRmsgLk0Z65b3fN5vh64Xo0q+oQItIAJal9Kzi6FxZK9qw0AkMcT9irtbnZ+vlLJgdZCywwWz1yaM9+t7tk8Xw9csUYVfUIEWsBGNE9g2G6+bN73V++yUQzqAEzL8/UqIIF297MBAAw8Xw9cUqNmPiECLWAmute4yf3XE+Lu1UaUBcAMPF2vAsw8V6DFfcrsHp2XA2A5PF8PXFCjRj4hAi0AAAAAAAAAqAwCLQAAAAAAAACoDAItAAAAAAAAAKgMAi0AAAAAAAAAqAwCLQAAAAAAAACoDAItAAAAAAAAAKgME2h1F5UWfhw6+Miad/npLF9D256e4/LKcqq07/Phaexirh5e44c7vTK/HW41lI3oQCqlDJZDhg22GK1a1cg2DtI1qtoj0fXdnpJvIf/G1r3GMndMP6YIar9w+wVN+R6+aMNAa/N5IQeSip9bjuhDKWY0+jaBltrpfA/lTsXX2KUEWpwdsSxgyPHLXMP5oL8e2NSt6T4nP5CuCcMXOei2k5+qouhJrHvRR0IK8rW/m2ODLUercnLGwfaBVlCq3bmLr94Ot+5/tierNNZo3ZEk+w/vpCjADD1SNdppe4qsvKeLtV9QBHzRHy+vP17+85//NNo6uD0x8m0XaO3O+V7RU7EAV3uFBBq7kECLtSOW+Vs/KHMF54PpNNq5NW+Hm9P6nR9mV4besdgeblSx5aeGlIepou0pZYjyZZio3gX5prw7lw2mW1lxyunjYEVpUBba6+Tl8NFFHcalrTVadyDJtwxLnLzMlas/5QDRcm59nhoBK/N7I4ugWaD1ceR66lZW1w/nC/GPZwXKnUGosctQJN6OWGZv/bDMlVwxIoXp3Jrd2ex6vu+v7j6ioK+TnypEOunFMGqj+L9MUK2CfJPencsGM6ysOOU5Ay26VMN+kLRNH2u0bk+SCaY9Z5nr0U7b02S14hoBK7N7I8sgCrS0HeTu5hP+Z/58sA87wIhZa/mOXWc4Gj2WuXrsBjlMkzgFc0egzeflfttv3C1GQW/C1khJOXzXT5bP19/s5DIKRD0hIG/y6bdYZG0f0vCa+NGCBlmpyFsXaI0dFOlR5UhzGGH2DdQ/Pe4eE8Zv9LusJAk7ym59S6l8K0vUWLbMgfMxlNOpNZ9vj82tyUk5STkTFU8OpdIDrShE6Ts3g/O9+byECvy+v+YGafZ8U9612GAcK3KNW6KxtUgfB7UaSdL4YeyfuVJVCbRWYd0PJ4Gz6+WVuRasTjLj74uoliYrYwOtpt6mbAv5/lVYgNCQc1I2aSx80YT2XRj//ve/f/e73xEPyGHAG627epI1FIdwMmV/VqlrpIdboObrpClN+xHehsQ48PSlDaa+xl6gr6kfu4s1UlL2vZNwkkzOl/6LrRXkfMNw5X1/qjZREbb468fR22skyMpA79sJ1khoLJmve6qBbd/N5+V+u1xv+03XELfL6cN/XZazVKr81reUKty1Few0s7QCUWavgl1bBO4yl280S9JDXrORlHIqWdPelQOtoPvafF7u5711Bp2Y9LXutynJN+Fdqw0SrUD1Zor9ivlWIn0cTK9ROGro/TNnoTW2Dq7Eur2QlTCBJZa5qU4K42+GJ2OUlaztZd6mbAvZ/hWxGu87nIWem6yx8EWN7bs8jsejPdAiF4vskz38W0RjuHlp+cZnAGoGWk5GfjmjyTBHGyw1YlOmj+qOGUn5svLMaV8q3yYL9GLKSiuY0Fa0KI2N8nVdVbF9nQZ6nEhxTusqchZLld/6WqnkRrG2AlXmRwkJz8OmDOr8cXbKJjLOyo/Fqxxo9b8fphLt23KCw1HUKmuDfO3vmmxQ0Do6LOGGCVW1KpA8DqbWiBiPdPVmhF/hMoz1WHfXAx+NWzGXUeY68GMKU4xUT4ayMtXEqnubukeR6V9FR0y9Caxiz40FvuhEvmgjGgRammTjtyipRcrN5hs8rR1okVtZHqlZnFS9Rt5fmFkT36jEUTBPubV8h5Xc6votdzdKK1SAvemYPVsity8ZUz3+qMpZbMTs1ldKFSMPIWQr0Fn3kjkYPI8o3x7ZrSlJ2UAfk6QverQKtMaIhZcMyWNv2P3eL1wkBVoZ+VrfNdogY/umoZoMtCa71T0iM9ASpGHpn5VSbbOvd1+VdTuGYN3+OnuZayD2z6QtJ3syEwda/Jokawtl/pUvEF905Z4bC3zRaXzRVvzrX//67W9/+/Lz/zVUnlzMjfopVfRMoEVtJhw0WMg3erdpoOXtBtaUW6iRmLK3ddXBkG9PgXIL+T6E35E2DRzt2bXFxmorlMPIUw202Pa1BFqKnPlWbhloxfuqhUCLOT/G7aEPExR1I8mtKUvZqLdZvnheoMVaSifegxOxFB2+N2+ZK8nX+K7VBhnbzw60pr/VXSxzYo1iaWj9c4P6rtG6B0myOx0WWOYKmK1MeUXyZKoFWsXeJmcLhf6VO7wGXWi558YCX7SiLzoD//znPxMCrXDTLXegVnSC01e0hHz5I3esWa5xRStOfJpZBLkMkqOQwrwrWlxqU65o2UvVLtCK/P7kFS2uzKNkyDMJcr492kad/JRlEm59IGhyGYYvh3xbSOgMS/I1vWu2wcorWrXXxlNSrr+iFTauJYVy1mjd5DbvhZe5HLV/Jt6ab0Wrjrf5GttCsX9FzajWSTml7eCLMu27SP7xj3/85je/efn5/4axFneSSqm8oeOwpewsFKYdVs5Z0eqbijwhoOwTlWZT+KVPOWVqI1lY2gbKreVrFGYGos9hPdEkIZzRYjVWHELE9tVCGoOceTtqFWjFU4Ypu8/FMof7xeMd4Xy+joaIJyKyU9bUUhrImX7DL17FQCvWHHaVRp3ko/tJoSfMzdfwbp4Nhi2VHmhp+iBLUnqaNw6W1ygsnl+GJm79oq3bMrKHh6nmLrNMC52UVDHVk6kVaFXyNh2xeGNZkX/V5/t2uBFnn4pShi9qk6TYvkvk73//uznQ0ucPTPtJ+NmL4F6U8TdJ83AZgda4Y5u4lSvc4RbeuCKPlMYakSnLI6hsrroPxy/WS9dkZZ3jNLeaPznE3G4SyspC7zHL46KqSP4QIrSvuklPlrNhijGn9S3hn79Z94sPtOJWEMpMbGR3finn60hbbb6slDn630vdDtdvKA1heyqVSrz4Ry0VucqkvFuSr/au3QZZ288KS9QeTJak8DR/HEypUSgNrX+u22MzyS7Luo0jO3UP2/J6pJY6KYy/ib5ZszNaiuJFCQq2UMW/up6PV6Wvy0gZvqgp35a+aBP+9re//frXv34EWrv/o/bgBR2HRzhhI95my6cc/CAwMDlfj9orWg5BhG3bhU/WSEmZqnJwlafqn/mbKv3ZO6EVhHzDNCtrNl1gk6xUuBUtSWP1IYRrX8NpKFHOoh1lt75equCzFe/7a+B8CK0glZm7E9aSryNqQ5yckTJDWF+y22H6DWY/c68h8lOrMgtvcbParrqK2iXMiOfkq7yrazurdWJvptmvYco8c/WgYByUn8rSUPrnVrfYL9q6k9YHHp3wEnukhjpJKI9vpIonkxtoKd5Igbep+ypl/pW1r6uWMnzRrwl90fr89a9//emnn15+/j/EohYt7riR3EGiRYW1fO0Un9GqRbuUn4+Gsmp3s/PTlUpphUWWGayAuTRnrlvdv5ucwRJYX+vP5W0uFPii6+Yvf/nLTz/99PIzQ6ClHBttdk+u6biqDXm3RgSUewk0k1W7m52fr1RyKyy0zGDxzKU5893q/r3kDJbAClt/Lm9zqcAXXTd//vOff/WrX5kCrXiOwXCMoQYl+b7vr+PPtK/WRkC5lwBktQTQCgAAACZhLm9zocAXXTd/+tOffvnLX7787H9suwfdq+vv0l7/yhTk6+5rT5wCgXIvAchqCTxXK3Cf6SD2ggMAAJicubzNJQJfdN388Y9/TAm0AAAAAAAAAABoDIHWm233IAAAAAAAAAAAjT9+fv7iF79AoAUAAAAAAAAA1fjDH/6AQAsAAAAAAAAAaoJACwAAAAAAAAAqg0ALAAAAAAAAACqDQAuA78q3++wjaMHb4fZ1v+03hel4d+53n5WvlDIAAAAwE9NehrFOx274Elc39g+wn+Lxf+Z+CyLwGNwU/Efut7/SP/9VUOb4B17Buk+zDwTfXlDeLYOXVb40LG2kp0m3UXkLSlSyo83nxZeJ2L4zIrd+iW6sMeXFUSMcor8mj0ALAADAupn2evfVBVr98L893Hg3/UH46bfdmf/K3sfRebQ9Cf4W7YK0KfPHkf9a69vh5vyyC05cX1x6t0IrmGSVLg2pjRJLyLZRaguq1LGj7clLRGvfuZBbv1g3VpbyEqkQDu3OpHki0AIAALBq/h//CaTUKWe2aQAAAABJRU5ErkJggg==" alt="" />
3.创建topic
#进入到kafka的bin目录下:
cd /home/rtmap/kafka_2.11-0.9.0.0/bin
#创建名为test123的topic
[root@test1 bin]# ./kafka-topics.sh --create --zookeeper 192.168.181.128:2181,192.168.181.129:2181,192.168.181.130:2181 --replication-factor 2 --partitions 3 --topic test123
Created topic "test123". #创建成功提示 #解释
--replication-factor 2 #复本两份
--partitions 1 #创建3个分区
--topic #主题为shuaige
4.检查创建的topic信息
[root@test1 bin]# ./kafka-topics.sh --describe --zookeeper 192.168.181.128:2181,192.168.181.129:2181,192.168.181.130:2181 --topic test123
Topic:test123 PartitionCount:3 ReplicationFactor:2 Configs:
Topic: test123 Partition: 0 Leader: 0 Replicas: 0,1 Isr: 0,1
Topic: test123 Partition: 1 Leader: 1 Replicas: 1,2 Isr: 1,2
Topic: test123 Partition: 2 Leader: 2 Replicas: 2,0 Isr: 2,0
5.创建一个生产者,生产一些数据
#创建一个生产者
./kafka-console-producer.sh --broker-list 192.168.181.128:9092 --topic test123
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA9AAAACsCAIAAAAcxNOYAAAUP0lEQVR4nO3dy43qOhgA4PTDbiTaYImmi1mxowakKYAGkCiBNRTBKo3cu+CVp/MixyHzSd/iHH7iOLaT/BiTSZLFMlls9ml62q2TxbJo9XtK0/1P6fXFMlmst+f0ethkX/w+pNfz71dzNFNC7pX7i/uf15uz/8hUsnLbyr0ErX5PxWOvLfnpa3e51jZLte9Dek2P369XNvu02D7JYpn8HMslt9224p33w7kf4Or3lF62q9bVrqpMy7cFe2G9PVcc0asXQqMOAODTJItl34T7nmk9NyymoeFo7Yv3hPtrd7mmx+/V7ym9pW6bfT5ZrM16b5tU5aP3WmVCX7vLtZSDNubTwxPu70Na3u+z0cZKuH+OpWibamfrs9m3+5AQ7oXc4d/eKeEGAOYqWSz7J9yLe7L1UErmwtHFMnkkr9n3PGayN/v0lpbd/lFRw/K2j9B9k6fstvmtqmd8K0vOv9hwXJUt+dqqMPuba6hi3YYl3Jv9swe7J9yhRg7WuakXsqHLdpX5VNBm1AEAfJBksQwl3DF87S4d1oSQUZVwAwAQVbJYTi3h7rzUmAcJNwDA5CSL5eQS7vIS59XvyZx323aTcAMATEmyWBbX2tb93PDfKiyYtqI34PbTxm5rygEA+Dfi1wAAAGYsfg0AAGDG4tcAAABmLH4NAABgxuLXAAAAZix+DQAAYMaSxXKajwVMFvk/hz6dWvXS7gnZz79m36Pw6I8FXG/Prz9Z/7W79DiQmgbJPRryTSV/kIpG+DSTe9J/V7GecD/efuOdR23Gc88rIfAmzsERPFs2xu0wl6IV/Rwzl+P19lzIuYPbjlerxetjQKfUZ9SEu2kv6+35Uduf41h5w+r3lGmTd9zON/u0oiP+XsL9kDsjPouEe3L7jX8ehcZz7yvhsPtC4Nqenf2pvigNmPJouKest+dn4YU2GfZpPLTfppJ73Qcbt21qyQHHG+zBfMmlgTdq7/c3Xha0HC3hnmLmFurBbNdXj5wuni07rYQ7n709Kpnt+yjddk8Bv3eXcRLuoWr28mq6r91lpGp8H3KN9obbec39OH6iEIuEOx4J9/uNMp573xeC1/Z8VQudkr+o3pLj9l3WdE/5OdZ+wVu4S/4crx3OsuB+G0rufx8Mb9vQkkOON9iD91o9Grn4h65H7P2BRk24P67OPTO3Lj1YPQnYwbOUSSXc34eKS8z3IVvJf99tr3nir89KuFe/p2zCPUqjFYfQmxLuihLiJwqxSLjjkXC/34QS7vC1PZeNPV+pHc8dEsHGe0poR4U5ji7H3rDfYMlD7oMdt8235IDjbejBYP49Xu8PJ+FuU/KgUVcw9LKZLJahAfTI1TJT7p2+0qqOFv5se2kyvzCZndnqsGnatrzfclHV39C1K7l1t+U9TunMrkvncF0zPi40mffUrGivvnBUe+e9tjxxXhiXj7bN7DT/TU3N1E5zwt2n5LDc5oWur+2mFn0U+F64YQBkGqTxy98O3dpQ57ee+8UbZ/30UsdeyFepuc5htX1UPn//zT214boxoI+az6MR2zkwnhtPhKFX77CKa/vq91Ts7vISx+L7u/7oqPKeEv5CsnQe9UllahPuFiX3uA922zbfku1qVTUH2dCDpevP7VuF277+Se/3a70uWVCnu1WLm1Ho+vyuOkfK3II9OHSNwPMg6xPubH/kh3j+o8DtYF7lhKPl0p5+jo8XX61/2q0zr9dv+9zq0V6lTySFE3K9PRQKab5s9U24M8O37lNU1U2octvKvVfPh2XWbVd+dTBYxQUo1+wV34pu9pkWvh1g9ugqVP4cs1PJLZRG6Wb/LDw4npv6KDjqms+UQL+HR/uAMTnk3C9es9rPJzX1Qvh4w3VuEOqj9ufge43XR83n0VjtHB7P4egbrt5hdTPchfOxNNtarHnXz2NV+w0mdk033AH7bVvy6Al3lwQj+2Llx87aHiyk1KvfU3rcvgb8v+j9vupHe/e7Ves7Tvj6PKDOE8ncAj1Y8emro+eRhBLu4r3w1goVh5e5lYajoQZ6JIWPy81z5Va7hLt6L89DaG6yERPuzCb1HzZqEu5i9lY1xGsT7sy3ge+/FlRNRb/GSWANYn6YVV06gzPcvUvu8+aG8dzQRwNKbjE26kd7UMOY7H/ul29IXRLuYJe1Obtr6jyk96v79x/cVsfro/B5NGI7P/VIuN9x9Q6rn/EtzahV7+U+Cdc1DQ0k3LkJvPKTA24NcuuR7gdecy9rVfLICXe5JdvUqnqVbagHs0vDn8svM3eff9D7fYUWUXS5W3XIRgYnnRPP3Cp7MDPvPu6PJit+vBhq99dlNxwNNdAjKczm2c9zoDnhrkhG87f/e9vV99x4CXcuhRqQVHVLuDPrtsdIuAPfNl62uxY5cd0IDCfcQ0oOdWtN0tA0npv6qH7UtTpT6sZG42gPaRiTvc/9QSsmw6lb0/EG6twsdGVofw6+12h9FD6PRm3nh94z3MOu3mF11/bso1dPu03dXu7ZWPeBUbt2vDSnW/VdYjkXH3q8bUoeNeGua8nex1vbg8/BnPmxU+HuM3bv91Uz2jvfrTpkI4N/+zHpzK2pB2/p+LhruEMX9Kpfc78S7tpoqIHuK9xfa2WeKyLaJ9wNq3nCq2n/UcJdvRho3IR7s3/7h++aEZKdlakcWuV1V10S7v4ll6Kv5gr9QK1pPLfoo5pR1+pMqRsbzaO90/HmxmTvc7/ietIh4Q7+TLDpeIcmgo1ruAP9GxLohUh9FD6PhrZz+Hjrx3Ob6NCrd5ueahpC1d8jBec+e+y3JgV5NWZ2NveNM+ttSx4v4a5pyTccb0UP3gbzLpNtN6SV7+z93leGV01qEu4ud6sh2Uivlp9k5tauB4dNtTyLmNQM9z3hPv9+LfL/eB1nh89JtaqfyzifGe76HxO87VN43en37OvKVdSlBuw+wz2k5FC3jjTDXT/q3j3DPaTv3jjD3Tvh7jrDXa7YGz5Slq4Ms53hrj6P/kk790y4a/soWSz/UcJduwSufy7Scg13JjEqH2mfZ9LV7rdFyWMl3NUt+Z7jrerBigdON06+vLf3+5r5DHe4+96cubXtwVgJd9XlIPMVQDgaaKB7wv18c/YfbR4L2P4r9ecBtvopZ8tuq9H2hv3+Ge7MMpJV7kN8W/fBXblh7cgpriWtWIpXPKLOa7h7l1wndI9vGM/dErLcqGtzpgTHRt/0os2aubec+1U/18vst/BFeTDTajjeNolgaDzX9dF0Eu6K9e79RmzwPHpHOzcamHCX+uh11CMn3BWX2ca7ddOoq//xYikxyj5RoDEB7bPfdiWH26rX8QZbsmWtqtdwh3uw8jcnrR8FFivbXtaP9q53q5pf/lSeg0N/Lz7JzK19Dw5cwp4sln0T7upfwr7eHI7WvphfUvL6bUTxWYG1bRd+Ls/PsfG3Pi0X+gxJuAu/wyg06VgJd68/M/lcvlbzK/XqS2o+VJxCyB3+49Nq94S7b8lNB5ubIA8+paTtDGh41LU4U+rGxpCnUDWMyQHnfnEm9XzcZ388kD2Q4vMumnohfLwtEsHa8Rzso4kk3CP1UcUk3+B2btYj4X7H1TusafOK2dDHGA5dWgNX0dB+C71Q8RdYiv1btQSl837blBxuq0HHW9OSrWpV/ZSSdj3YvKqtZ++PJ3yzaHm36pSNJOHr85A6x8rcOvRgq49zIc9S+iTci+f4rlxg1BTNNEH2PY+Z7Ofgrl0sX9421y4Z9at4A/liseSaFRrtzrTccytLfVb9LLzOyxWqrhSZddu9Eu76uYrQAzGK50PxO6DC4zarfs3Z7jncfUoOqh9UofHc2EcNoy5wpgTHRuNoD8j+EqhiTA4791+FP544VHMOHr9rvzqvK7z+eIfNcAf6KFbC3XDdGNBHTefR4HZuVaVSazeN9t5X77CGa3u2VqVOL55HD7n2qRl1Le4poScTF3Zd95vsHvsNlNzqPthrv40t2Xy8dSlRsAdL7Vx/Be7X+2OqHe0Nd6v6q0rzHafPKdaqzjEyt3APFrYd+syJ50H+qydHtuuMgc9e+asG/6Chi5qEmE/xT0cLABPgyh9NslhOLeHuudSYf3oiDV0rSXQuuwB/jSt/NMliObmEu3Kpotyubbs5kWjFaAH4a1z5o0kWy+K6mX/32PaQwtKZf7Yi6hPlFyE5kWjFZRfgr3HljyZ+DQAAYMbi1wAAAGYsfg0AAGDG4tcAAABmLH4NAABgxuLXAAAAZqz00njP5FaykpUct2QAIIbSS5+YRihZyUoGAKaq9NInphFKVrKSAYCpKr30iWmEkpWsZABgqpLFsvin3Ys3+/X2/Axdtqv89qvfU+gPsAdLbtg2uF8lK/nvlAwAfLR7lnDYPF4qzK5t9ml6Pf9+3f+73h6e/14mi83+FVp+H/J5RmPJgW3D+1Wykv9QyQDAh/s+ZPOAZfFmv/o9tb/359/cUHJw2/B+lazkv1syAPBx9rmptWX1DHfb2392201TyYFtw/tVspL/cskAwKcp3drLN/vQ2tOv3SW78PSaT7jDJddvG96vkpX8t0oGAD5bh5v94zdhz5WptwyjsFC1ZcId3Da8XyUr+Q+VDAB8vO0593X2LW9otzL1NmN3/H69IZsorIMlh7dtsV8lK/lPlAwAfL6v3eX5BffX7nI9H/fnzM3+51hKBV7fhn8fMl+OP+bt8nN+tSWHtw3vV8lK/jslAwAfL3k8wux6/+XWepu/2edXphbWcN9/CvYIFbcNltywbXC/Slby3ykZAPhw8WsAAAAzFr8GAAAwY/FrAAAAMxa/BgAAMGPxawAAADMWvwYAADBj8WsAAAAzFr8GAAAwY/FrAAAAMxa/BgAAMGOllzb7dKQ/K/2JJQMAwDCllz4xLZZwAwAwVaWXPjEtlnADADBVpZc+MS2WcAMAMFXJYnlLWK8ZueR19XvKhPY/hSLW2/MzetmuCtFIJTdsKyo6RhQAoMo96z1sHi8VZos3+/Pv1+Pd34dCZrzZp+n19Yb19vB6c8ySA9uKio4SBQCo8X3I5hDLhuUZq99TNlr4b160koPbioqOEgUAqLPPTRUvm9ZDV80lV79/E6/kwLaioiNFAQBqlJLgYlr8tbtkl0q3Xi1dTq//XclTXeMrOu8oAECVcPJ6y4kLS6urZ/gev4B8vLkhLR6v5OC2oqLjRwEAsrbn3PKMWx78SF5v83nH79cG7ddhryOVHN5WVPSfRAEAnr52l+eX41+7y/V83J9facT3IfPV+WNW75Vk/BxLie/re/ZYJYe3FRUdJQoAUCd5PJLvev8l4nqbTV5zj7u+bFeFaGEddjH/iFRyw7aiomNEAQCqxa8BAADMWPwaAADAjMWvAQAAzFj8GgAAwIzFrwEAAMxY/BoAAMCMxa8BAADMWPwaAADAjMWvAQAAzFj8GgAAwIzFrwEAAMxY/BoAAMCMxa8BAADMWPwaAADAjCWLZbL6PaXp9WH/k3+HqOjfiQIAvF2y2OzPv1+P/38fClmIqOjfiQIAjKD4/9XvKU1Pu3X1u0VF/04UAOAtSi9t9qEURFT070QBAN4hWSy/dpdrZlXrNZ+CiIr+nSgAwPvd8o/cItdMCiIq+neiAACj2J7Ta3r8fr2UTUHWoqJ/JgoAMI7vQ3pNL9vVMlm8npj2TEFERf9OFABgFLdJvsd61st2td6esymIqOjfiQIAjCB+DQAAYMbi1wAAAGYsfg0AAGDG4tcAAABmLH4NAABgxuLXAAAAZix+DQAAYMbi1wAAAGYsfg0AAGDG4tcAAABmLH4NAABgxuLXAAAAZix+DQAAYMbi1wAAAGYsWSyTxXp7Tq/pzWW7KrxJdPpRAACmKlls9ml6Pf9+3V9abw/Pfy9FPyEKAMCEJavfU5qeduvqsOj0owAATNl99rQ2nxOdfhQAgAlLFsuprksWbR8FAGCqcv9Z/Z7S9Jqm+5+qt4pOPwoAwNQU/z/NZcqi7aMAAExK8nO8HjbP/3/tLrkVC6LTjwIAMGXJPYGrXR8sOv0oAADTFb8GAAAwY/FrAAAAMxa/BgAAMGPxawAAADMWvwYAADBj8WsAAAAzFr8GAAAwY/FrAAAAMxa/BgAAMGPxawAAADNWemmzT9PTbl2zgejnRjf71x+HT/c/rYcIAABDlF6aWpoo+pboZp+m1/PvV/uRAQDAW5RemlSaKPqm6M/RrDYAQByll6aUJoq+K/pzvKaX7arj4AAAYLhksSys7r0W0zXRT49KuAEA4klWv6c0vR42j5fy86OiHx39OV7zifidxdwAAP/M96GQfuWSOdFPj96Z4QYAiGWfmxxd5tO1jeiHRx8k3AAAsZSSs2IyJ/rJ0QcJNwBALJNME0Ul3AAAc7E95xYkfO0umWdcrEU/PPog4QYAiOVrd3mmYl+7y/V83J9f6Zrop0fvJNwAALEkt8dc3J4Wd9jcZkyz6Zrop0eThYQbACCe+DUAAIAZi18DAACYsfg1AACAGYtfAwAAmLH4NQAAgBmLXwMAAJix+DUAAIAZi18DAACYsfg1AACAGYtfAwAAmLH4NQAAgBmLXwMAAJix+DUAAIAZi18DAACYsWSxTFa/pzS95u1/Hu8QFe0XBQBgsUxuOdNpt04Wy2Sx3p7Ta3rZrh5hUdF+UQAAbr4P6TU9fj///3PMTlKKivaLAgBwN810TfTTowAA3FUtDMhkUaKi/aIAANzcJiYz8jmTqGi/KAAAN9tzej1sasJrUdFeUQAAHoorcfNERftFAQC4SxabfehRyqKi/aIAACyTxTLZl1bffh/SxwOVN6KivaIAADyc0uJK3K/d5T5Vefs7gqKiXaPRhzUAwHQU5ynvf6z79kppFlNUtFUUAICHxxOUM3LTlqKi/aIAACyTxTKJXwMAAJix+DUAAIAZS/6rF71yAADw6STcAAAwnv8By+sA5ISlCwEAAAAASUVORK5CYII=" alt="" />
6.创建一个消费者,消费者消费生产者的数据
#创建一个生产者
./kafka-console-consumer.sh --zookeeper 192.168.181.128:2181 --topic test123 --from-beginning
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGUAAACpCAIAAAAN7RfVAAAU0klEQVR4nO3dS3LCynoAYLaTw8w5LCPMruNdeMSMLYS6XgALCHW9g3h6YQ+XQY42kgx4SULdegHdmK/qq7LhR62W1Gr1rwdMJtPZyWJdFD+r99I7Sc2/fordcp66Gk/oY1Psi++P1NUAAICnV3qRWb50HPeXUqb518/26y11rfInXwIAgNsovVisi2J/tlmkr9x09rba7Uu1Wn+mr1K2PjalzSdfAgCA8dLXAAAAIE/pawAAAJCn9DUAAADIU/oaAAAA5Cl9DQAAAPKUvgYAAAB5Kr3I8fvEJ9PDD9fmV6tBuv0y0mFD9P6t3jy+T/x9uS32p5/JelvtBixIYIVUvlP+RiU/kYaVwIP9vl82e739CF7NwBEF99kQWRzE738su1+rS9eea5VI8Xu1lRF23ed3qWG9L7e1lCk67f1qNb1kcb0a/V3zpba5vC+3p9p+ft9rV5l//ZTWyS1GY4t10bAhXnecV9kjeCj50tOI9M/lE3DNHcuIs04tx4X35fZceG21jxtLxebbVvKgY1nrtG1rcvjytm+jVGtjuPuNZGZ3G1/mOPqKtY3yjt+0799Z80gmFfnSELVK5JUvVQffp0qWV1OSPfbY7j9Wu/vkS2MF5nJZdW+r3Z2q8bGprLQbjMYC6cGvHecNXSE8gHzpGUT75+ruU9ug1Y7xkNt039xtx4XP7+AtErUj3ef3vsexODrflpKHH8vi07asyRHL27aNUq2Nke6aLz1dnQeOvvrsvw/PXjI7cP++Y9kjlF5kly99bBqOLh+bciUfv8dertK8PVe+NP/6KedLd1lp9SZ0o3ypoYTfOM7rvkIy6nZfyu87xvy6/SjePy/W9YwletTrMY5vPS7EZlQ7zdTnuNYy32jJY45lPaetrskRyxsvOdXaGE++1KXkUa2u5tFdX2Akk8rvO5Y9QulFuEM/DbVL1zp73UvQHK1eOb1+9qZ2Kak01WbRNu31fK+Lar41olvJl08OypdKs746eIdW46mvL30m8DTX1Z5QfTKt4pY78PVlq1qXdFq3pZlWL5EHTsq250tDSo6rTF7b9MHN1GEbRW7IaWkApRXSep9J/8368OVtbqWHyY8dzrHY9edp+1aOoOHlbe+v4lrrfPnAg04wHS5N1HTuOiLR9v2opV0Fox3axv224GVZKqti/vVT32TX93jXP9/3odnG40L8kv7VvjBkJBrMEDqUPCZD6DRtdU12q1W3KwCBbZRqbQxbe31GMr164A4HlFjPf6s6Jxp9Rfff+91l0yyULw0eXXc6Sga1jUXbtmDt5sZK3YaPY8e05/YjTqzO3dSqEs6XyrOv9jLVJP6wzS7lxKPXpZWb1/HNy/L/rN5L74enPU91Wl9X5xJqffH7clMrpP2INTRfKm2k0PmPpjFx47SNc28+c1B6Zqnxwt1oDSOPympvuB1lsS6t4cMClpeuQeM3SfQquYOrVrpYnwuPtue2bRRtde17SmS7x1t7jsvbmi/9bHfL+WE33P1sFtXCo8sb769atNa50z54V/VVN6IHbt+PWnvRQLStr7vfFqy06uvrS7V96uqaQ0m/++Ii841mZW2bbMR8u5Z893ypTxMtv9nej/VZogesjaHCLbx/D9z5qBHt+cfUOZPRV2Q/ajh1ch9tI5nho+v2o2TM+P65fFG3eT/tP47teoQdMELuWOe40ou2fKm0I5VWX0PLLh3O49FZQ/sof2yzuBxpznced8uXmudyXoT2veWO+VJpknCuGGgN9cFoU+8WzJdKNx7cvqdoOn1yaSeRe/erzazpqBm9vjS45CEfbmnPLdtoRMkd2ka4tee4vK350vH/j82pXys9e9Bl7w70V2PWRvPyPvoe5noDGNUDx/ej+HruEA3W845bsDJJ455ydT67uZ8/nnntO26O5EuV0+fXX1x0aEuHZe9/m1PgeNSp5DvnS9drskutulxfCm6jVGtjqNgdaH164B4jitE5Q+ajr8a2Ubr48OC7H2PXlwaNrtuOknFj+ufGE3a9sprQmKHrKHdgyR3qHFdrSZF8KXIxtzbVZXvHo03bqfzmuVM7pknn43p7vtSwlqvnEY+7TXinvV++VBkBjxgT98uXSs8s3SNfitzYsFuuOqQ0oRYYz5fGlBzbrIGRWVt7bttG4VbXaU8JtY3W1p7f8nbIl+qp0eXNtuXtfMwINZUhdX6QqzmO64Gj+1F8PbdshWhfd9ctWF7MhkLKv7vws1qE+vljbtN/4wafm7q6stF0Nb7pNpJxy9ul5LvmS6E1OXJ549so1doYKjDe6N0D9xhRjH6AJ+vRV9v+O/QKw2DRfGnw6Dp8lGwxpn8enS8Fj6Fdj7DjS06YL9VD55YRjx7fCeZLpzsyvz+mpdvJuudLDa4y5uP7gftr758vNd9Ee998abG++cEg0ELK51Mbm9b1/cp98qXhJV9FL6sr9hxkW3vusI0Cra7TnhJqG+2tPbvlHZ8vRZZ37Gh7UJ07iGyF1uilArVOaVwPHN2P4uu5ZStE+7p7b8HLorUV0nwltteTAB3mGxh/XNZP+VrKDa9rdS35fvlSYE3ebHlD2+jxa2Pc3h3Ll/r0wGNGFH3lO/rqtv8+tvcemi916dtD+VKv437f/rl6b1tTQ8opX+pa57ha68nq+tIxX9p+vU2r/1xWX48zHEHN3+X/e64vXWcOFzc6NR7qec/buvEJoqsV2P/60piSY5v1Ttdbwq3u1teXukuzvLe+vnQ9rxucEehV5wdo3Bducn2peT+KL13Lsvc9f3nzLdipfw7eAzx8KNnx+aXS6OT6WDPkcB6cb4eS75UvNa/JWyxv2zZKtTaG+uXXl4LuMfrquv9m0HtPx46uH3Z9qWkNx07tnT+WS77Usc5xtdbTO19qOhKUToLGo6USAvnS+cPlf7p8n3j3+5EC7fIx+dLtWkPsk7PKPXilLxbv4divNU4YbDn1O3EbbmGvL1Hv55cGlxwSu1Db0p77jaevT3h0uacu1DYG342dZnmvzoOW71BqOxK0LG+XY0asPQfrnDRfCrXhUT1wdD9qWc/t0fgd8CO3YJsu/XNDV9k62GprOY3zvT7rX7+zsXUcP2S+3UqOr6tByxtdkx1rFX5+qcOA+F5r416izy/16IEDT642dvJjv64my9FX95MdD/vKh0vFeuZL8a1/43zpKm8Jrv/OT0dnlC/1eaI7YlItvX++1PwNHpcPx6PBN6v3410ezVzUvmQ8uNvEvwr287v1YeKON8iOyZdqDx+PaWfRT84q+VLpi/J61rzYN7WQyGmqauhwkbf2DVqnl6fzTP3zpaElty1s5fJU9SxFqD23n+GItLoOe0qobQz74uMclrd8ea17vtSyvB2OGcH2HK1zwnwpdgAb0QPH96Mu6zkUbenrRm/BVm3989XCXtphrHuM9ISx+daWt+lboWrbqOn+vd7z7VJyfF2NWt7AmuxUq9D343XYRvdbG/cT7/A79sC9RhSTeM8/ps6pRl/d2sZxSdtv2LupIflSdOvfNF/q1T93vZMzo3xp/N2ns8n0JvnS9Ny1Ba5zxaOldlD+zOk60vmoFnxG8HrayvoqCT/BEhnu10sO3N7WbUucx4UHtd21+asne9/71NQySs8sDcqXwmcZY4l7vSusX3wvb6Dj12IOypcGlRwVblSx9ty6jVpaXWRPibaN1tae5/KWot8f5YbU6UgQXt5x15cidU6WLzVv/aurc/174Lb9qLVdBaPncXZzXzd+C3ZqyVdLXV4VVxuuXueTSk0CLafDcaHWKcVmHfpKmAHzjZTc6Vg2aL6ta7J9eQMj2njJd18b9xTshFt64PBe1n7UiPb8Y+qcYvTVq22k+F7T/vlSZOuPy5daxqItW7DhAafaGbpQqxuVL40aIUfr3FFt7Ty6DYWdH1hKXpOnc5tMuqNQLwC8sIf2QvCS7GU83CHxuM7bcx4H3qjOtRLzyZcGPmbDQ/vQIb8jCfx6RnJwb/YyHq3pVr0kt7AmqHPpRWb5UuMtlYbmXdebPhRIRi8E92Yv4+GurtX0eGzsyet8VeLJQ3+EMah2y2m++WsGqjfv5tx2gV/OSA7uzV5GCuWfz8ooX7h7nVMvAwAAQK7S1wAAACBP6WsAAACQp/Q1AAAAyFP6GgAAAOQpfQ0AAADyFAjc77eYnrFkAADgJQUCz5jVyJcAAICbCgSeMauRLwEAADcVCDxjViNfAgAAbqr0YrEuin1JJfeYf/2UQuvPWkHvy+05ulvOa9FEJbdMKyp6jygAAL/I8c8hadksToHatZrFevv1dprmY1NLbBbrothfPvC+3Fw+nLLkyLSioneJAgDwuxz+fGzKQ8BZy71t86+fcrT2sipZydFpRUXvEgUA4JeZTGfHU+aXCzWztmeBmq7kNH8+YcmRaUVF7xQFAOB3mUxnTTlM/Z231a78mFDnJ4VSlpzr8y2ivzsKAMAvMpnOWnOPQ0pTe6yo+fz66csbTh9OVnJ0WlHR+0cBAPgFJtPZ8Xx56d62Qxpzyj0OZ9O/Py6TdX8GKVXJ8WlFRR8SBQDg2R3+vK125zuL3la7/fZ7vb2MAj82pfuOTufUL2PEz++rvOVyk1KqkuPTioreJQoAwC9z/u/wXd7745covC/LuUflZ452y3ktWnsGqT58TFRyy7SioveIAgDwq6SvAQAAQJ7S1wAAACBP6WsAAACQp/Q1AAAAyFP6GgAAAOQpfQ0AAADylL4GAAAAeUpfAwAAgDylrwEAAECe0tcAAAAgT+lrAAAAkKf0NQAAAMhT+hoAAADkKX0NAAAA8nT5b/71UxT7k/Vn9XOioq8TBQCAg9N/i/X26+307semNogUFX2dKAAAnDS/O//6KYqf1buo6KtHAQB4ZYHAYh0bQYqKvk4UAIAXdv7vbbXbl57o2FdHkKKirxMFAICjw5/D8LHygEdpBCkq+jpRAAC4mExnk+n7clvsi++PS6A8ghQVfZ0oAACUHP58bIp9sVvOZ5Pp5auWzyNIUdHXiQIAwMXpv8X68izHbjl/X27LI0hR0deJAgDASfoaAAAA5Cl9DQAAAPKUvgYAAAB5Sl8DAACAPKWvAQAAQJ7S1wAAACBP6WsAAACQp/Q1AAAAyFP6GgAAAOQpfQ0AAADyFAgs1kXxs3q/wyyVrGQlpy0ZAIDOAoFnHAUqWclKBgDgpgKBZxwFKlnJSgYA4KYCgWccBSpZyUoGAOCmSi8W66LYl1THau/L7Tm0W86rpcy/fkoTrj9rs4mW3DJtdL5KVvLrlAwAwOMd/xwGeZvFKVA7t71YF8V++/V2fPm+3Jz/n02mi/UlNPvYVIeJrSVHpo3PV8lKfqGSAQBI4fDnY1Mexs3qY7X510/3oVv1wy0lR6eNz1fJSn7dkgEAeIzJdHY87X05sT1rvr7UdfRWnra15Mi08fkqWcmvXDIAAA8xmc6aRmbX78Seu3hb7coPXeyr+VK85PC08fkqWcmvVTIAAAlMprN+Y7XT4+znpzIOA8TaQxod86XotPH5KlnJL1QyAABpTKaz4znv0r1Ah2Fft6cyDufLvz8uHyiP8+Ilx6ftMF8lK/klSgYAIJHDn7fV7nx30Ntqt99+r7elsdrn99VI7nIr0cemdGfR6ax59Yx7sOT4tPH5KlnJr1MyAABpnP87fPfx/vjQ+fuyOlarPpVRe37p+BT7KVSfNlpyy7TR+SpZya9TMgAAKaSvAQAAQJ7S1wAAACBP6WsAAACQp/Q1AAAAyFP6GgAAAOQpfQ0AAADylL4GAAAAeUpfAwAAgDylrwEAAECe0tcAAAAgT+lrAAAAkKf0NQAAAMhT+hoAAADkKX0NAAAA8lR68b7cFvviYLec1z4qmn8UAAC4qdN/i3VR7Ldfb8eX78vN+X/Rp4gCAAC3dvwz//opip/Ve/OHRPOPAgAAN3f6b7Euin1wOC6afxQAALi10os8n8kR7R4FAABuquGt+ddPUeyLYv3ZNIFo/lEAAOAmmt/N8xEd0e5RAABgvOOfz+/9ZnF+9221q9zuJZp/FAAAuLnzf2+r3enBmIZnY0TzjwIAADeWvgYAAAB5Sl8DAACAPKWvAQAAQJ7S1wAAACBP6WsAAACQp/Q1AAAAyFP6GgAAAOQpfQ0AAADylL4GAAAAeUpfAwAAgDwFAot1Ufys3kV/XXSxLor9yfqzQxMBAICXFQjkNsoXvUl0sS6K/fbrrUvLAAAAAoGsRvmiN4p+frumBAAAPQQCOY3yRW8V/fzeF7vlvHPjAACAF1d6UXmyZV8fbYs+e1S+BAAAPR3/zL9+imK/WZwC1asTok8d/fzeV/OoIw8yAQBA3OHPx6Y2eq6MxUWfPXrk+hIAAPQymc6O93FdLk3MqqNt0WePnsiXAACgl8l01jS2ro/FRZ85eiJfAgCAXibTWa6jfFH5EgAAJDX548/J9G/Lf/5VvpvrbbUrfbva+3JbiD5z9ES+BAAAvUz++HMynb391/Y8kn5b7fbb7/X2Mtp+W+1Enzp6JF8CAIBeDvnS5PAFa4evmd4sDtcryqNt0WePTqbyJQAA6Gnyx5/nlAkAAIAL+RIAAEAz+RIAAECzyR//LmUCAABoIF8CAABoNvk3+RIAAEAT+RIAAEAz+RIAAEAz+RIAAEAz+RIAAEAz+RIAAEAz+RIAAEAz+RIAAEAzv1cLAADQ7JIvzf/+UxT7qvXn6XPzL1HRIVEAAHhex2TpP/7+P3/99bN6n0xnk+n7clvsi91yfvrQ/OunKERFe0cBAOCpHfKl//zv//3XX//4OL/7+V2+RPCxKfbFt6ho3ygAADw3+ZKofAkAAJodv+lh/veru6pKg+CGe65ERTtEAQDgqR3zpc9/VJ/Xrw55P79FRYdEAQDgqU3++HMy/dvyn3/tN4vAh96X20JUtH8UAACe3OFP/SmUKlHRYVEAAHhup/8W69hP6IiKDosCAMAzm0xnpyFv5SrBx6Y4/ZCOqOiwKAAAPLnJ9PgVZ7WnUN5Wu+OFAlHRYdHkjRsAAEaaTGcNVwkO4+DjO6Kiw6IAAPDkTv8dfjmnpHLRQFR0WBQAAJ5Z+hoAAADkKX0NAAAA8jSZzib/N4lJXkUAAIAkJlP5EgAAQJPJVL4EAADQ4P8BQ5brFuGdt2QAAAAASUVORK5CYII=" alt="" />
到此如果没明显的报错说明集群正常,可以使用了!
7.日志说明
默认kafka的日志是保存在/home/rtmap/kafka_2.10-0.9.0.0/logs目录下的,这里说几个需要注意的日志
server.log #kafka的运行日志
state-change.log #kafka他是用zookeeper来保存状态,所以他可能会进行切换,切换的日志就保存在这里 controller.log #kafka选择一个节点作为“controller”,当发现有节点down掉的时候它负责在游泳分区的所有节点中选择新的leader,这使得Kafka可以批量的高效的管理所有分区节点的主从关系。如果controller down掉了,活着的节点中的一个会备切换为新的controller.
kafka学习(三)-kafka集群搭建的更多相关文章
-
kafka学习(二)-zookeeper集群搭建
zookeeper概念 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名 服务等.Zookeeper是h ...
-
SpringCloud学习之—Eureka集群搭建
Eureka集群的搭建 上次说过了在SpringCloud应用中使用Eureka注册中心,用来对服务提供者进行服务注册与发现,但同时,它也是一个"微服务",单个应用使用空间有限,因 ...
-
【转载】MQTT的学习之Mosquitto集群搭建
本文出自:http://www.cnblogs.com/yinyi521/p/6087215.html 文章钢要: 1.进行双服务器搭建 2.进行多服务器搭建 一.Mosquitto的分布式集群部署 ...
-
kafka Centos7.2 单机集群搭建
前提是已经安装好了zk集群 1.下载 kafka_2.11-1.0.0.tgz 下载网址 http://kafka.apache.org/documentation.html 2.解压 tar ...
-
kafka学习总结之集群部署和zookeeper
1. 集群部署 kafka集群的瓶颈主要在网络和磁盘上:kafka依赖于zookeeper,zookeeper集群的节点采用奇数个,3个节点允许一个节点失败,5个节点允许2个节点失败. 图 1 ka ...
-
九、kafka伪分布式和集群搭建
伪分布式: 1.先将zk启动,如果是在伪分布式下,kafka已经集成了zk nohup /kafka_2.11-0.10.0.1/bin/zookeeper-server-start.sh /kafk ...
-
redis 学习笔记-cluster集群搭建
一.下载最新版redis 编译 目前最新版是3.0.7,下载地址:http://www.redis.io/download 编译很简单,一个make命令即可,不清楚的同学,可参考我之前的笔记: red ...
-
Hadoop学习之Hadoop集群搭建
1.检查网络状况 Dos命令:ping ip地址,同时,在Linux下通过命令:ifconfig可以查看ip信息2.修改虚拟机的ip地址 打开linux网络连接,在桌面右上角,然后编辑ip地址, ...
-
大数据学习——hadoop2.x集群搭建
1.准备Linux环境 1.0先将虚拟机的网络模式选为NAT 1.1修改主机名 vi /etc/sysconfig/network NETWORKING=yes HOSTNAME=itcast ### ...
随机推荐
-
js获取当前时间戳 不需毫秒数
var timestamp = Date.parse(new Date())/1000;
-
DataSet ,DataTable,DataRow 之间的关系与使用
关系 DataSet 包含多个DataTable,DataTable包含多行DataRow. 使用情况: 有时候GridView等控件需要将数据源动态绑定到DataSet中:将多个DataSe ...
-
Nginx 过滤sub模块
L70 通过 --with-http_sub_module 编译进nginx sub_filter 指令 Syntax: sub_filter string replacement; Default: ...
-
使用SecureCRT脚本备份网络设备配置的一点感悟
https://blog.csdn.net/qq_25294171/article/details/85158458
-
[TPYBoard - Micropython之会python就能做硬件 开篇]会python就能做硬件!
转载请注明:@小五义http://www.cnblogs.com/xiao*QQ群:64770604 会python就能做硬件! 在写这套教程之前,首先感觉山东萝卜电子科技有限公司(turnip ...
-
TFS二次开发06——签入(CheckIn)
一个Item 就是一个文件或文件夹 using Microsoft.TeamFoundation.Client; using Microsoft.TeamFoundation.VersionContr ...
-
Python 错误与异常
2017-08-01 13:40:17 在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复 ...
-
JVM对象分配和GC分布【JVM】
最近在学习java基础结构,刚好学到了jvm,总结了以下并可以结合思维导图认识以下Jvm的对象: 栈:什么是栈? 先说一下栈的数据结构吧,栈它是一种先进后出的数据结构(FILO),跟队列刚好相反(先进 ...
-
kafka 自启脚本
每次使用的时候都要手动去启动真头痛! 解决办法,自启吧! 方法一: 方法一: /etc/rc.local中添加 文件地址记得替换掉 ,我没使用这种,发现不是每次都行,就换了第二种方法 /usr/loc ...
-
node.js知识点提取
javascript是脚本语言,脚本语言都需要一个解析器才能运行.