本文依照参考文献简介 Ricker wavelet 。
参考:
[1] Frequency of the Ricker wavelet DOI: 10.1190/GEO2014-0441.1
[2] Understanding the Finite-Different Time-Domain by Jojn B. Schneider April 5 2017
简介
著名动画片 Rick and Morty 中的“姥爷” Rick 的名字后加 “er” ,我们就得到了 “Ricker”。但 Ricker 波和动画片没有什么关系,这个波是地球物理领域中比较常见的信号模型。1943~1944年间,Norman Ricker 求解带牛顿粘性的 Stokes 方程,得到了一个解,后人称为 Ricker 波。因为地球物理领域中大家都用粘弹性的材料模型,Ricker 波作为这个模型下的解,自然被广泛提及。引文主要研究了 Ricker 波在时域以及频域的中点问题。
方程
时域的表达式:
$$
r\left(t\right) = \left(1-\dfrac{1}{2}\omega^2_p t^2\right) \mathrm{exp}\left(-\dfrac{1}{4}\omega_p^2 t^2\right)
$$
频域的表达式:
$$
R\left(\omega\right) = \dfrac{2\omega^2}{\sqrt{\pi}\omega^3_p} \mathrm{exp}\left(-\dfrac{\omega^2}{\omega^2_p}\right)
$$
数学上 Ricker 波是高斯包的二阶导数,求导之后等同于频域上乘上了$-\omega^2$,消去了直流分量。观察频域的表达式,不难发现 Ricker 波类似于热学中的麦克斯韦速率分布概率密度,以及泊松分布$\left(\lambda,k\right)$中的$k = 2$的情况。依据参考文献,实际中的地震波信号有的类似高斯包的一阶导数,或者是分数阶导数,但是可能由于 Ricker 包存在理论基础,被广泛应用。
文献[1]利用$Lambert\quad W$函数,得到 Ricker 波的波包半宽表达式:
$$
t_b \approx \dfrac{0.88521}{\omega_p}
$$
文献[1]中还求了频谱中的中点频率$\omega_c$和频谱半宽$\omega_b$。中心频率是通过$Lambert\quad W$函数求取频谱半宽位置之后取中点得到的,峰值频率是将频谱表达式对$\omega$求导置零得到的解。学过热学的同学都应该有印象:气体分子的最概速度-$v_p$、平均速度-$v_a$、均方根速度-$v_r$ 有那么一点差别。如果还有一个中点速度-$v_c$ 的话,$v_c$与$v_p$的比值和文中求得的结果应该一致。
应用
依据文献[2],FDTD仿真中的 Ricker 波表达式:
$$
f_r \left(t\right) = \left(1-2\pi^2 f_P^2\left[ t-d_r\right]^2 \right) \mathrm{exp} \left( -\pi^2 f_P^2\left[ t-d_r\right]^2 \right)$$
当时间与空间都进行离散处理之后得到:
$$
d_r = M_d \dfrac{1}{f_P}
$$
其中$M_d$代表偏移周期的数量,文献[2]中说用1或者2就足够了。离散的 Ricker 包的表达式:
$$
f_r \left[q\right] = \left(1-2\pi^2 \left[ \dfrac{S_c q}{N_P} - M_d\right]^2 \right) \mathrm{exp} \left( -\pi^2 \left[ \dfrac{S_c q}{N_P} - M_d\right]^2 \right)
$$
其中$q$是时间步数,$S_c$称为 Courant 数,$N_P$是感兴趣的频率$f_p$对应的一个波长下的点数。
END