MySQL优化技巧之三(索引操作和查询优化)

时间:2022-09-26 23:50:53

高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。

一、最左前缀索引

这里先说一下联合索引的概念。MySQL中的索引可以以一定顺序引用多个列,这种索引叫做复合(联合)索引,一般的,一个联合索引是一个有序元组<a1, a2, …, an>,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。

以employees.titles表为例,下面先查看其上都有哪些索引:

SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles | 0 | PRIMARY | 1 | emp_no | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 2 | title | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 3 | from_date | A | 443308 | | BTREE |
| titles | 1 | emp_no | 1 | emp_no | A | 443308 | | BTREE |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+

从结果中可以到titles表的主索引为<emp_no, title, from_date>,还有一个辅助索引<emp_no>。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

ALTER TABLE employees.titles DROP INDEX emp_no;

这样就可以专心分析索引PRIMARY的行为了。

规则1:全列匹配(此时若没有按照索引顺序时,mysql查询优化器会自动的调整顺序来使用定义好的索引)

示例说明如下:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND title='Senior Engineer' AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='' AND title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

效果是一样的。

规则2:最左前缀匹配

示例说明如下:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+

当查询条件精确匹配索引的左边连续一个或几个列时,如<emp_no>或<emp_no, title>,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是key_len为4,说明只用到了索引的第一列前缀。

规则3:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供

示例说明如下:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND from_date='1986-06-26';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让from_date也使用索引而不是where过滤,可以增加一个辅助索引<emp_no, from_date>,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date之间的“坑”填上。

首先我们看下title一共有几种不同的值:

SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title |
+--------------------+
| Senior Engineer |
| Staff |
| Engineer |
| Senior Staff |
| Assistant Engineer |
| Technique Leader |
| Manager |
+--------------------+

只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no=''
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 7 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:

SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+-------------------------------------------------------------------------------+
| 10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='' AND from_date='1986-06-26'|
| 11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='' AND title IN ... |
+----------+------------+-------------------------------------------------------------------------------+

“填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

规则4:查询条件没有指定索引第一列

示例说明如下:

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

由于不是最左前缀,索引这样的查询显然用不到索引。

规则5:匹配某列的前缀字符串。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND title LIKE 'Senior%';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 56 | NULL | 1 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。(原文表述有误,如果通配符%不出现在开头,则可以用到索引,但根据具体情况不同可能只会用其中一个前缀)

规则6:范围查询(范围查询后面的列将无法使用索引)

对于范围条件查询,MYSQL无法再使用范围后面的其他索引列了。但对多个等值条件查询则没有这样的限制。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no < '' and title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no < ''
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '' AND ''
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。

规则7:查询条件中含有函数或表达式

很不幸,如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND left(title, 6)='Senior';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:

EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。

二、索引选择性

  既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。

第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:

Index Selectivity = Cardinality / #T

显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,上文用到的employees.titles表,如果title字段经常被单独查询,是否需要建索引,我们看一下它的选择性:

SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
| 0.0000 |
+-------------+

title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。

三、索引优化策略之前缀索引

  有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使用。

从图12可以看到employees表只有一个索引<emp_no>,那么如果我们想按名字搜索一个人,就只能全表扫描了:

EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+

如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建<first_name>或<first_name, last_name>,看下两个索引的选择性:

SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.0042 |
+-------------+
SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.9313 |
+-------------+

<first_name>显然选择性太低,<first_name, last_name>选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用first_name和last_name的前几个字符建立索引,例如<first_name, left(last_name, 3)>,看看其选择性:

SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.7879 |
+-------------+

选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:

SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.9007 |
+-------------+

这时选择性已经很理想了,而这个索引的长度只有18,比<first_name, last_name>短了接近一半,我们把这个前缀索引 建上:

ALTER TABLE employees.employees
ADD INDEX `first_name_last_name4` (first_name, last_name(4));

此时再执行一遍按名字查询,比较分析一下与建索引前的结果:

SHOW PROFILES;
+----------+------------+---------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+---------------------------------------------------------------------------------+
| 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
| 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
+----------+------------+---------------------------------------------------------------------------------+

性能的提升是显著的,查询速度提高了120多倍。

前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。

----------------------------------------------------------------------------------------------

补充该节中的"范围查询"说明:

  Mysql对于范围查询range分的优化为单字段优化和多元素优化:

单元素索引范围条件的定义如下:
 
·         对于BTREE和HASH索引,当使用=、<=>、INIS NULL或者IS NOT NULL操作符时,关键元素与常量值的比较关系对应一个范围条件,即const范围。
 
·         对于BTREE索引,当使用>、<、>=、<=、BETWEEN、!=或者<>,或者LIKE 'pattern'(其中 'pattern'不以通配符开始)操作符时,关键元素与常量值的比较关系对应一个范围条件。
 
·         对于所有类型的索引,多个范围条件结合ORAND则产生一个范围条件。
 
前面描述的“常量值”系指:
 
·         查询字符串中的常量
 
·         同一联接中的const或system表中的列
 
·         无关联子查询的结果
 
·         完全从前面类型的子表达式组成的表达式
多元素索引的范围条件:
 
     1.----------------
     对于BTREE索引,区间可以对结合AND的条件有用,其中每个条件用一个常量值通过=、<=>、IS NULL、>、<、>=、<=、!=、<>、BETWEEN或者LIKE 'pattern' (其中'pattern'不以通配符开头)比较一个关键元素。区间可以足够长以确定一个包含所有匹配条件(或如果使用<>或!=,为两个区间)的记录的单一的关键元组。例如,对于条件:
     key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10
 
    2.-----------
    对于HASH索引,可以使用包含相同值的每个区间。
    key_part1 cmp const1 AND key_part2 cmp const2
    AND ... AND key_partN cmp constN;
 
    这里,const1,const2,...为常量,cmp是=、<=>或者IS NULL比较操作符之一,条件包括所有索引部分。(也就是说,有N 个条件,每一个对应N-元素索引的每个部分)。   
 
    3.  ----------
    如果包含区间内的一系列记录的条件结合使用OR,则形成包括一系列包含在区间并集的记录的一个条件。如果条件结合使用了AND,则形成包括一系列包含在区间交集内的记录的一个条件。例如,对于两部分索引的条件:
 (key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)
 
    区间为:
    (1, -inf) < (key_part1, key_part2) < (1, 2)
    (5, -inf) < (key_part1, key_part2)   

Mysql检索时间查询 (版本要求: 5.0.37或以上),开启profile:
mysql> set profiling=1;
2 Query OK, 0 rows affected (0.00 sec)
eg:
mysql> select * from test_1;
mysql> show profiles;
+----------+------------+----------------------+
| Query_ID | Duration | Query |
+----------+------------+----------------------+
| 1 | 0.84718100 | select * from test_1 |
+----------+------------+----------------------+
1 row in set (0.00 sec)

MySQL优化技巧之三(索引操作和查询优化)的更多相关文章

  1. 着重基础之—MySql 不能遗忘的索引操作

    着重基础之—MySql 不能遗忘的索引操作 关于MySql索引的基础知识我就不在这里写了,我不太想当信息的搬运工. 技巧分享:Workbench 作为一款专为MySQL设计的ER/数据库建模工具.除了 ...

  2. mysql 优化实例之索引创建

    mysql 优化实例之索引创建 优化前: pt-query-degist分析结果: # Query 23: 0.00 QPS, 0.00x concurrency, ID 0x78761E301CC7 ...

  3. MySQL优化技巧

    目录 MySQL的特点 数据类型优化 整型类型 小数类型 字符串类型 时间类型 主键类型的选择 特殊类型的数据 索引优化 一个使用Hash值创建索引的技巧 前缀索引 多列索引 聚簇索引 覆盖索引 重复 ...

  4. 日常工作中常见的mysql优化技巧

    1.介绍一下MYSQL经常使用的优化技巧. MySQL 自带 slow log 的分析工具 mysqldumpslow ,可是没有说明.本文通过分析该脚本,介绍了其用法. slow log 是 MyS ...

  5. MySQL优化技巧之五(mysql查询性能优化&rpar;

    对于高性能数据库操作,只靠设计最优的库表结构.建立最好的索引是不够的,还需要合理的设计查询.如果查询写得很糟糕,即使库表结构再合理.索引再合适,也无法实现高性能.查询优化.索引优化.库表结构优化需要齐 ...

  6. 0104探究MySQL优化器对索引和JOIN顺序的选择

    转自http://www.jb51.net/article/67007.htm,感谢博主 本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分" ...

  7. MySQL优化技巧总结

    MySQL优化的几个大方向 ① 硬件优化 ② 对MySQL配置参数进行优化(my.cnf)此优化需要进行压力测试来进行参数调整 ③ SQL语句方面的优化 ④ 表方面的优化   硬件优化 cpu,内存, ...

  8. mysql优化-----多列索引的左前缀规则

    索引优化策略 :索引类型 .1B-tree索引 关注的是:Btree索引的左前缀匹配规则,索引在排序和分组上发挥的作用. 注:名叫btree索引,大的方面看都用的二叉树.平衡树.但具体的实现上,各引擎 ...

  9. 项目中常用的19条MySQL优化技巧

    原文:https://segmentfault.com/a/1190000012155267 声明一下:下面的优化方案都是基于 “ Mysql-索引-BTree类型 ” 的 一.EXPLAIN 做My ...

随机推荐

  1. VUE 入门笔记

    前端的MVVM概念今年来也算是如火如荼,了解完 MVVM的概念,也该找个去尝试下 首先我先试了下 国内小而美的 VUE 试着照着文档敲出入门文件,内容都在注释里 <!doctype html&g ...

  2. ubuntu 配置nginx&plus;php&plus;mysql 遇到的一些问题

    /* 公司内网打算配置一台ubuntu为主机的测试服务器.刚好手头有一个昂达的主机,装的windows 声音又大,还不如直接装ubuntu .声音又小,还占用资源少. */ 刚开始安装php5 结果提 ...

  3. &lbrack;转&rsqb;freemarker中的list

    转至:http://zhuyuehua.iteye.com/blog/1975251 freemarker list (长度,遍历,下标,嵌套,排序) 1. freemarker获取list的size ...

  4. html禁止手机页面放大缩小

    html禁止手机页面放大缩小 <meta name="viewport" content="width=device-width,minimum-scale=1.0 ...

  5. python-整理-logging日志

    python的日志功能模块是logging 功能和使用方式非常类似于log4 如何使用logging: # 导入日志模块import logging# 使用配置文件设置日志时,需要导入这个模块 imp ...

  6. 如何使用Java、Servlet创建二维码

    归功于智能手机,QR码逐渐成为主流,它们正变得越来越有用.从候车亭.产品包装.家装卖场.汽车到很多网站,都在自己的网页集成QR码,让人们快速找到它们.随着智能手机的用户量日益增长,二维码的使用正在呈指 ...

  7. 测试一下robotgo自动化操作,顺便解决了原来的mingw版本中只有gcc&comma;没有g&plus;&plus;的问题

    参考:https://gitee.com/veni0/robotgo#examples  但是编译不成功 找到这个:https://gitee.com/veni0/robotgo#examples ( ...

  8. VMware安装windows10系统

  9. JavaScript基础笔记(十四)最佳实践

    最佳实践 一)松散耦合 1.解耦HTML/JavaScript: 1)避免html种使用js 2)避免js种创建html 2.解耦CSS/JS 操作类 3.解耦应用逻辑和事件处理 以下是要牢记的应用和 ...

  10. 1090&period; &lbrack;SCOI2003&rsqb;字符串折叠【区间DP】

    Description 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S  S 2. X(S)是X(X>1)个S连接在一起的串的折叠.记作X(S)  SSSS…S(X个S). ...