高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。
一、最左前缀索引
这里先说一下联合索引的概念。MySQL中的索引可以以一定顺序引用多个列,这种索引叫做复合(联合)索引,一般的,一个联合索引是一个有序元组<a1, a2, …, an>,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。
以employees.titles表为例,下面先查看其上都有哪些索引:
SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles | 0 | PRIMARY | 1 | emp_no | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 2 | title | A | NULL | | BTREE |
| titles | 0 | PRIMARY | 3 | from_date | A | 443308 | | BTREE |
| titles | 1 | emp_no | 1 | emp_no | A | 443308 | | BTREE |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
从结果中可以到titles表的主索引为<emp_no, title, from_date>,还有一个辅助索引<emp_no>。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:
ALTER TABLE employees.titles DROP INDEX emp_no;
这样就可以专心分析索引PRIMARY的行为了。
规则1:全列匹配(此时若没有按照索引顺序时,mysql查询优化器会自动的调整顺序来使用定义好的索引)
示例说明如下:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND title='Senior Engineer' AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='' AND title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| 1 | SIMPLE | titles | const | PRIMARY | PRIMARY | 59 | const,const,const | 1 | |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
效果是一样的。
规则2:最左前缀匹配
示例说明如下:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
当查询条件精确匹配索引的左边连续一个或几个列时,如<emp_no>或<emp_no, title>,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是key_len为4,说明只用到了索引的第一列前缀。
规则3:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供
示例说明如下:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND from_date='1986-06-26';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让from_date也使用索引而不是where过滤,可以增加一个辅助索引<emp_no, from_date>,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date之间的“坑”填上。
首先我们看下title一共有几种不同的值:
SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title |
+--------------------+
| Senior Engineer |
| Staff |
| Engineer |
| Senior Staff |
| Assistant Engineer |
| Technique Leader |
| Manager |
+--------------------+
只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no=''
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 7 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:
SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+-------------------------------------------------------------------------------+
| 10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='' AND from_date='1986-06-26'|
| 11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='' AND title IN ... |
+----------+------------+-------------------------------------------------------------------------------+
“填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。
规则4:查询条件没有指定索引第一列
示例说明如下:
EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
由于不是最左前缀,索引这样的查询显然用不到索引。
规则5:匹配某列的前缀字符串。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND title LIKE 'Senior%';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 56 | NULL | 1 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。(原文表述有误,如果通配符%不出现在开头,则可以用到索引,但根据具体情况不同可能只会用其中一个前缀)
规则6:范围查询(范围查询后面的列将无法使用索引)
对于范围条件查询,MYSQL无法再使用范围后面的其他索引列了。但对多个等值条件查询则没有这样的限制。
EXPLAIN SELECT * FROM employees.titles WHERE emp_no < '' and title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no < ''
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 4 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:
EXPLAIN SELECT * FROM employees.titles
WHERE emp_no BETWEEN '' AND ''
AND title='Senior Engineer'
AND from_date BETWEEN '1986-01-01' AND '1986-12-31';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| 1 | SIMPLE | titles | range | PRIMARY | PRIMARY | 59 | NULL | 16 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。
规则7:查询条件中含有函数或表达式
很不幸,如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no='' AND left(title, 6)='Senior';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| 1 | SIMPLE | titles | ref | PRIMARY | PRIMARY | 4 | const | 1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:
EXPLAIN SELECT * FROM employees.titles WHERE emp_no - 1='';
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | titles | ALL | NULL | NULL | NULL | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。
二、索引选择性
既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。
第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。
另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:
Index Selectivity = Cardinality / #T
显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,上文用到的employees.titles表,如果title字段经常被单独查询,是否需要建索引,我们看一下它的选择性:
SELECT count(DISTINCT(title))/count(*) AS Selectivity FROM employees.titles;
+-------------+
| Selectivity |
+-------------+
| 0.0000 |
+-------------+
title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。
三、索引优化策略之前缀索引
有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使用。
从图12可以看到employees表只有一个索引<emp_no>,那么如果我们想按名字搜索一个人,就只能全表扫描了:
EXPLAIN SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido';
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | employees | ALL | NULL | NULL | NULL | NULL | 300024 | Using where |
+----+-------------+-----------+------+---------------+------+---------+------+--------+-------------+
如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建<first_name>或<first_name, last_name>,看下两个索引的选择性:
SELECT count(DISTINCT(first_name))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.0042 |
+-------------+
SELECT count(DISTINCT(concat(first_name, last_name)))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.9313 |
+-------------+
<first_name>显然选择性太低,<first_name, last_name>选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用first_name和last_name的前几个字符建立索引,例如<first_name, left(last_name, 3)>,看看其选择性:
SELECT count(DISTINCT(concat(first_name, left(last_name, 3))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.7879 |
+-------------+
选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:
SELECT count(DISTINCT(concat(first_name, left(last_name, 4))))/count(*) AS Selectivity FROM employees.employees;
+-------------+
| Selectivity |
+-------------+
| 0.9007 |
+-------------+
这时选择性已经很理想了,而这个索引的长度只有18,比<first_name, last_name>短了接近一半,我们把这个前缀索引 建上:
ALTER TABLE employees.employees
ADD INDEX `first_name_last_name4` (first_name, last_name(4));
此时再执行一遍按名字查询,比较分析一下与建索引前的结果:
SHOW PROFILES;
+----------+------------+---------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+---------------------------------------------------------------------------------+
| 87 | 0.11941700 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
| 90 | 0.00092400 | SELECT * FROM employees.employees WHERE first_name='Eric' AND last_name='Anido' |
+----------+------------+---------------------------------------------------------------------------------+
性能的提升是显著的,查询速度提高了120多倍。
前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。
----------------------------------------------------------------------------------------------
补充该节中的"范围查询"说明:
Mysql对于范围查询range分的优化为单字段优化和多元素优化:
单元素索引范围条件的定义如下: · 对于BTREE和HASH索引,当使用=、<=>、 IN 、 IS NULL 或者 IS NOT NULL 操作符时,关键元素与常量值的比较关系对应一个范围条件,即const范围。
· 对于BTREE索引,当使用>、<、>=、<=、 BETWEEN 、!=或者<>,或者 LIKE 'pattern' (其中 'pattern' 不以通配符开始)操作符时,关键元素与常量值的比较关系对应一个范围条件。
· 对于所有类型的索引,多个范围条件结合 OR 或 AND 则产生一个范围条件。
前面描述的“常量值”系指: · 查询字符串中的常量 · 同一联接中的const或system表中的列 · 无关联子查询的结果 · 完全从前面类型的子表达式组成的表达式 |
多元素索引的范围条件: 1. ----------------
对于BTREE索引,区间可以对结合 AND 的条件有用,其中每个条件用一个常量值通过=、<=>、 IS NULL 、>、<、>=、<=、!=、<>、 BETWEEN 或者 LIKE 'pattern' (其中 'pattern' 不以通配符开头)比较一个关键元素。区间可以足够长以确定一个包含所有匹配条件(或如果使用<>或!=,为两个区间)的记录的单一的关键元组。例如,对于条件:
key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10
2. -----------
对于HASH索引,可以使用包含相同值的每个区间。
key_part1 cmp const1 AND key_part2 cmp const2
AND ... AND key_partN cmp constN;
这里,const1,const2,...为常量,cmp是=、<=>或者 IS NULL 比较操作符之一,条件包括所有索引部分。(也就是说,有N 个条件,每一个对应N-元素索引的每个部分)。
3. ----------
如果包含区间内的一系列记录的条件结合使用 OR ,则形成包括一系列包含在区间并集的记录的一个条件。如果条件结合使用了 AND ,则形成包括一系列包含在区间交集内的记录的一个条件。例如,对于两部分索引的条件:
(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)
区间为:
(1, -inf) < (key_part1, key_part2) < (1, 2)
(5, -inf) < (key_part1, key_part2)
|
Mysql检索时间查询 (版本要求: 5.0.37或以上),开启profile:
mysql> set profiling=1;
2 Query OK, 0 rows affected (0.00 sec)
eg:
mysql> select * from test_1;
mysql> show profiles;
+----------+------------+----------------------+
| Query_ID | Duration | Query |
+----------+------------+----------------------+
| 1 | 0.84718100 | select * from test_1 |
+----------+------------+----------------------+
1 row in set (0.00 sec)
MySQL优化技巧之三(索引操作和查询优化)的更多相关文章
-
着重基础之—MySql 不能遗忘的索引操作
着重基础之—MySql 不能遗忘的索引操作 关于MySql索引的基础知识我就不在这里写了,我不太想当信息的搬运工. 技巧分享:Workbench 作为一款专为MySQL设计的ER/数据库建模工具.除了 ...
-
mysql 优化实例之索引创建
mysql 优化实例之索引创建 优化前: pt-query-degist分析结果: # Query 23: 0.00 QPS, 0.00x concurrency, ID 0x78761E301CC7 ...
-
MySQL优化技巧
目录 MySQL的特点 数据类型优化 整型类型 小数类型 字符串类型 时间类型 主键类型的选择 特殊类型的数据 索引优化 一个使用Hash值创建索引的技巧 前缀索引 多列索引 聚簇索引 覆盖索引 重复 ...
-
日常工作中常见的mysql优化技巧
1.介绍一下MYSQL经常使用的优化技巧. MySQL 自带 slow log 的分析工具 mysqldumpslow ,可是没有说明.本文通过分析该脚本,介绍了其用法. slow log 是 MyS ...
-
MySQL优化技巧之五(mysql查询性能优化)
对于高性能数据库操作,只靠设计最优的库表结构.建立最好的索引是不够的,还需要合理的设计查询.如果查询写得很糟糕,即使库表结构再合理.索引再合适,也无法实现高性能.查询优化.索引优化.库表结构优化需要齐 ...
-
0104探究MySQL优化器对索引和JOIN顺序的选择
转自http://www.jb51.net/article/67007.htm,感谢博主 本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分" ...
-
MySQL优化技巧总结
MySQL优化的几个大方向 ① 硬件优化 ② 对MySQL配置参数进行优化(my.cnf)此优化需要进行压力测试来进行参数调整 ③ SQL语句方面的优化 ④ 表方面的优化 硬件优化 cpu,内存, ...
-
mysql优化-----多列索引的左前缀规则
索引优化策略 :索引类型 .1B-tree索引 关注的是:Btree索引的左前缀匹配规则,索引在排序和分组上发挥的作用. 注:名叫btree索引,大的方面看都用的二叉树.平衡树.但具体的实现上,各引擎 ...
-
项目中常用的19条MySQL优化技巧
原文:https://segmentfault.com/a/1190000012155267 声明一下:下面的优化方案都是基于 “ Mysql-索引-BTree类型 ” 的 一.EXPLAIN 做My ...
随机推荐
-
VUE 入门笔记
前端的MVVM概念今年来也算是如火如荼,了解完 MVVM的概念,也该找个去尝试下 首先我先试了下 国内小而美的 VUE 试着照着文档敲出入门文件,内容都在注释里 <!doctype html&g ...
-
ubuntu 配置nginx+php+mysql 遇到的一些问题
/* 公司内网打算配置一台ubuntu为主机的测试服务器.刚好手头有一个昂达的主机,装的windows 声音又大,还不如直接装ubuntu .声音又小,还占用资源少. */ 刚开始安装php5 结果提 ...
-
[转]freemarker中的list
转至:http://zhuyuehua.iteye.com/blog/1975251 freemarker list (长度,遍历,下标,嵌套,排序) 1. freemarker获取list的size ...
-
html禁止手机页面放大缩小
html禁止手机页面放大缩小 <meta name="viewport" content="width=device-width,minimum-scale=1.0 ...
-
python-整理-logging日志
python的日志功能模块是logging 功能和使用方式非常类似于log4 如何使用logging: # 导入日志模块import logging# 使用配置文件设置日志时,需要导入这个模块 imp ...
-
如何使用Java、Servlet创建二维码
归功于智能手机,QR码逐渐成为主流,它们正变得越来越有用.从候车亭.产品包装.家装卖场.汽车到很多网站,都在自己的网页集成QR码,让人们快速找到它们.随着智能手机的用户量日益增长,二维码的使用正在呈指 ...
-
测试一下robotgo自动化操作,顺便解决了原来的mingw版本中只有gcc,没有g++的问题
参考:https://gitee.com/veni0/robotgo#examples 但是编译不成功 找到这个:https://gitee.com/veni0/robotgo#examples ( ...
- VMware安装windows10系统
-
JavaScript基础笔记(十四)最佳实践
最佳实践 一)松散耦合 1.解耦HTML/JavaScript: 1)避免html种使用js 2)避免js种创建html 2.解耦CSS/JS 操作类 3.解耦应用逻辑和事件处理 以下是要牢记的应用和 ...
-
1090. [SCOI2003]字符串折叠【区间DP】
Description 折叠的定义如下: 1. 一个字符串可以看成它自身的折叠.记作S S 2. X(S)是X(X>1)个S连接在一起的串的折叠.记作X(S) SSSS…S(X个S). ...