前言
每种编程语言为了表现出色,并且实现卓越的性能,都需要有大量编译器级与解释器级的优化。
由于字符串是任何编程语言中不可或缺的一个部分,因此,如果有快速操作字符串的能力,就可以迅速地提高整体的性能。
在本文中,我们将深入研究 Python 的内部实现,并了解 Python 如何使用一种名为字符串驻留(String Interning)的技术,实现解释器的高性能。本文的目的不仅在于介绍 Python 的内部知识,而且还旨在使读者能够轻松地浏览 Python 的源代码;因此,本文中将有很多出自CPython的代码片段。
全文提纲如下:
1、什么是“字符串驻留”?
字符串驻留是一种编译器/解释器的优化方法,它通过缓存一般性的字符串,从而节省字符串处理任务的空间和时间。
这种优化方法不会每次都创建一个新的字符串副本,而是仅为每个适当的不可变值保留一个字符串副本,并使用指针引用之。每个字符串的唯一拷贝被称为它的intern,并因此而得名 String Interning。
String Interning 一般被译为“字符串驻留”或“字符串留用”,在某些语言中可能习惯用 String Pool(字符串常量池)的概念,其实是对同一种机制的不同表述。intern 作为名词时,是“实习生、实习医生”的意思,在此可以理解成“驻留物、驻留值”。
查找字符串 intern 的方法可能作为公开接口公开,也可能不公开。现代编程语言如 Java、Python、PHP、Ruby、Julia 等等,都支持字符串驻留,以使其编译器和解释器做到高性能。
2、为什么要驻留字符串?
字符串驻留提升了字符串比较的速度。如果没有驻留,当我们要比较两个字符串是否相等时,它的时间复杂度将上升到 O(n),即需要检查两个字符串中的每个字符,才能判断出它们是否相等。
但是,如果字符串是固定的,由于相同的字符串将使用同一个对象引用,因此只需检查指针是否相同,就足以判断出两个字符串是否相等,不必再逐一检查每个字符。由于这是一个非常普遍的操作,因此,它被典型地实现为指针相等性校验,仅使用一条完全没有内存引用的机器指令。
字符串驻留减少了内存占用。Python 避免内存中充斥多余的字符串对象,通过享元设计模式共享和重用已经定义的对象,从而优化内存占用。
3、Python的字符串驻留
像大多数其它现代编程语言一样,Python 也使用字符串驻留来提高性能。在 Python 中,我们可以使用is运算符,检查两个对象是否引用了同一个内存对象。
因此,如果两个字符串对象引用了相同的内存对象,则is运算符将得出True,否则为False。
>>> "python" is "python"
True
我们可以使用这个特定的运算符,来判断哪些字符串是被驻留的。在 CPython 的,字符串驻留是通过以下函数实现的,声明在 unicodeobject.h 中,定义在 unicodeobject.c 中。
PyAPI_FUNC(void) PyUnicode_InternInPlace(PyObject **);
为了检查一个字符串是否被驻留,CPython 实现了一个名为PyUnicode_CHECK_INTERNED的宏,同样是定义在 unicodeobject.h 中。
这个宏表明了 Python 在PyASCIIObject结构中维护着一个名为interned的成员变量,它的值表示相应的字符串是否被驻留。
#define PyUnicode_CHECK_INTERNED(op) (((PyASCIIObject *)(op))->state.interned)
4、字符串驻留的原理
在 CPython 中,字符串的引用被一个名为interned的 Python 字典所存储、访问和管理。 该字典在第一次调用字符串驻留时,被延迟地初始化,并持有全部已驻留字符串对象的引用。
4.1 如何驻留字符串?
负责驻留字符串的核心函数是PyUnicode_InternInPlace,它定义在 unicodeobject.c 中,当调用时,它会创建一个准备容纳所有驻留的字符串的字典interned,然后登记入参中的对象,令其键和值都使用相同的对象引用。
以下函数片段显示了 Python 实现字符串驻留的过程。
void PyUnicode_InternInPlace(PyObject **p) { PyObject *s = *p; ......... // Lazily build the dictionary to hold interned Strings if (interned == NULL) { interned = PyDict_New(); if (interned == NULL) { PyErr_Clear(); return; } } PyObject *t; // Make an entry to the interned dictionary for the // given object t = PyDict_SetDefault(interned, s, s); ......... // The two references in interned dict (key and value) are // not counted by refcnt. // unicode_dealloc() and _PyUnicode_ClearInterned() take // care of this. Py_SET_REFCNT(s, Py_REFCNT(s) - 2); // Set the state of the string to be INTERNED _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL; }
4.2 如何清理驻留的字符串?
清理函数从interned字典中遍历所有的字符串,调整这些对象的引用计数,并把它们标记为NOT_INTERNED,使其被垃圾回收。一旦所有的字符串都被标记为NOT_INTERNED,则interned字典会被清空并删除。
这个清理函数就是_PyUnicode_ClearInterned,在unicodeobject.c 中定义。
void _PyUnicode_ClearInterned(PyThreadState *tstate) { ......... // Get all the keys to the interned dictionary PyObject *keys = PyDict_Keys(interned); ......... // Interned Unicode strings are not forcibly deallocated; // rather, we give them their stolen references back // and then clear and DECREF the interned dict. for (Py_ssize_t i = 0; i < n; i++) { PyObject *s = PyList_GET_ITEM(keys, i); ......... switch (PyUnicode_CHECK_INTERNED(s)) { case SSTATE_INTERNED_IMMORTAL: Py_SET_REFCNT(s, Py_REFCNT(s) + 1); break; case SSTATE_INTERNED_MORTAL: // Restore the two references (key and value) ignored // by PyUnicode_InternInPlace(). Py_SET_REFCNT(s, Py_REFCNT(s) + 2); break; case SSTATE_NOT_INTERNED: /* fall through */ default: Py_UNREACHABLE(); } // marking the string to be NOT_INTERNED _PyUnicode_STATE(s).interned = SSTATE_NOT_INTERNED; } // decreasing the reference to the initialized and // access keys object. Py_DECREF(keys); // clearing the dictionary PyDict_Clear(interned); // clearing the object interned Py_CLEAR(interned); }
5、字符串驻留的实现
既然了解了字符串驻留及清理的内部原理,我们就可以找出 Python 中所有会被驻留的字符串。
为了做到这点,我们要做的就是在 CPython 源代码中查找PyUnicode_InternInPlace 函数的调用,并查看其附近的代码。下面是在 Python 中关于字符串驻留的一些有趣的发现。
5.1 变量、常量与函数名
CPython 对常量(例如函数名、变量名、字符串字面量等)执行字符串驻留。
以下代码出自codeobject.c,它表明在创建新的PyCode对象时,解释器将对所有编译期的常量、名称和字面量进行驻留。
PyCodeObject * PyCode_NewWithPosOnlyArgs(int argcount, int posonlyargcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyObject *code, PyObject *consts, PyObject *names, PyObject *varnames, PyObject *freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int firstlineno, PyObject *linetable) { ........ if (intern_strings(names) < 0) { return NULL; } if (intern_strings(varnames) < 0) { return NULL; } if (intern_strings(freevars) < 0) { return NULL; } if (intern_strings(cellvars) < 0) { return NULL; } if (intern_string_constants(consts, NULL) < 0) { return NULL; } ........ }
5.2 字典的键
CPython 还会驻留任何字典对象的字符串键。
当在字典中插入元素时,解释器会对该元素的键作字符串驻留。以下代码出自dictobject.c,展示了实际的行为。
有趣的地方:在PyUnicode_InternInPlace函数被调用处有一条注释,它问道,我们是否真的需要对所有字典中的全部键进行驻留?
int PyDict_SetItemString(PyObject *v, const char *key, PyObject *item) { PyObject *kv; int err; kv = PyUnicode_FromString(key); if (kv == NULL) return -1; // Invoking String Interning on the key PyUnicode_InternInPlace(&kv); /* XXX Should we really? */ err = PyDict_SetItem(v, kv, item); Py_DECREF(kv); return err; }
5.3 任何对象的属性
Python 中对象的属性可以通过setattr函数显式地设置,也可以作为类成员的一部分而隐式地设置,或者在其数据类型中预定义。
CPython 会驻留所有这些属性名,以便实现快速查找。以下是函数PyObject_SetAttr的代码片段,该函数定义在文件object.c中,负责为 Python 对象设置新属性。
int PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value) { ........ PyUnicode_InternInPlace(&name); ........ }
5.4 显式地驻留
Python 还支持通过sys模块中的intern函数进行显式地字符串驻留。
当使用任何字符串对象调用此函数时,该字符串对象将被驻留。以下是sysmodule.c文件的代码片段,它展示了在sys_intern_impl函数中的字符串驻留过程。
static PyObject * sys_intern_impl(PyObject *module, PyObject *s) { ........ if (PyUnicode_CheckExact(s)) { Py_INCREF(s); PyUnicode_InternInPlace(&s); return s; } ........ }
6、字符串驻留的其它发现
只有编译期的字符串会被驻留。在解释时或编译时指定的字符串会被驻留,而动态创建的字符串则不会。
Python猫注:这一条规则值得展开思考,我曾经在上面踩过坑……有两个知识点,我相信 99% 的人都不知道:字符串的 join() 方法是动态创建字符串,因此其创建的字符串不会被驻留;常量折叠机制也发生在编译期,因此有时候容易把它跟字符串驻留搞混淆。推荐阅读《join()方法的神奇用处与Intern机制的软肋》
包含 ASCII 字符和下划线的字符串会被驻留。在编译期间,当对字符串字面量进行驻留时,CPython确保仅对匹配正则表达式[a-zA-Z0-9_]*的常量进行驻留,因为它们非常贴近于 Python 的标识符。
注:关于 Python 中标识符的命名规则,在 Python2 版本只有“字母、数字和下划线”,但在 Python 3.x 版本中,已经支持 Unicode 编码。这部分内容推荐阅读《醒醒!Python已经支持中文变量名啦!》
以上就是详解python字符串驻留技术的详细内容,更多关于python字符串驻留技术的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/huaweiyun/p/14412425.html