CF462D
Codeforces Round #263 (Div. 2) D
Codeforces Round #263 (Div. 1) B
B. Appleman and Tree
time limit per test
2 seconds memory limit per test
256 megabytes input
standard input output
standard output Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white. Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices. Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7). Input
The first line contains an integer n (2 ≤ n ≤ 105) — the number of tree vertices. The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1. The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white. Output
Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7). Sample test(s)
Input
3 Output
2 Input
6 Output
1 Input
10 Output
27 |
题意:有n个结点的树,结点编号0~n-1,0为根,分别给出1~n-1的父亲,再给出0~n-1各个结点的颜色(0为白,1为黑),要将其中一些边切掉,使每个联通块有且只有1个黑点,求切法种类数。
题解:树形DP。
从根DFS,f[x][0]表示对{x点和它的子树、x点连接父亲结点的边}这一整坨,有多少种方案使得x这个联通块没黑点(x是黑点的时候这个也不为0,是把x的父边切掉的种类数)
f[x][1]是这个联通块有黑点的种类数。
太难了!怪不得大家都掉分飞起,虽然题解的代码看起来很短,我根本想不出来啊看了半天还是不懂啊!
具体还是看代码吧,写了点注释,这个统计方法太碉了,我也弄得不是很清楚,算了日后再说。
代码:
//#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
#define usll unsigned ll
#define mz(array) memset(array, 0, sizeof(array))
#define minf(array) memset(array, 0x3f, sizeof(array))
#define REP(i,n) for(i=0;i<(n);i++)
#define FOR(i,x,n) for(i=(x);i<=(n);i++)
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define WN(x) printf("%d\n",x);
#define RE freopen("D.in","r",stdin)
#define WE freopen("1biao.out","w",stdout)
#define mp make_pair
#define pb push_back const int maxn=;
const int MOD=1e9+; int n;
int a[maxn]; struct Edge {
int next,v;
} e[*maxn];
int en=;
int head[maxn]; void add(int x,int y) {
e[en].v=y;
e[en].next=head[x];
head[x]=en++;
} bool u[maxn];
ll f[maxn][];///f[x][j] j=1表示x所在联通块有黑点,0表示无黑店 的种类数,包括x连接父亲的边和子树所有的边
void dfs(int x){
//printf("[in %d]",x);
int i;
u[x]=;
f[x][]=;
f[x][]=;///先假设当前点是个白点
for(i=head[x]; i!=-; i=e[i].next) {
if(!u[e[i].v]) {
dfs(e[i].v);
f[x][]=(f[x][]*f[e[i].v][] + f[x][]*f[e[i].v][])%MOD;///有黑点的情况,先用已经统计的有黑点的情况乘一发儿子没黑点的情况,然后用已经统计的没黑点的情况乘一发儿子有黑点的情况
f[x][]=f[x][]*f[e[i].v][]%MOD;///没黑点的情况直接乘儿子没黑点的情况
}
}
u[x]=;
///下面是对x点的父边的处理
if(a[x]==)f[x][]=(f[x][]+f[x][])%MOD;///x是白点,儿子要是有黑点,砍了x的父边就是没黑点,所以没黑点(f[x][0])的情况要加上有黑点的情况(f[x][1])
else f[x][]=f[x][];///x点是黑点,那不砍父边的情况(f[x][1])只有让x的儿子都不黑,砍父边的情况(f[x][0])也是x的儿子都不黑,因为x自己黑嘛,儿子再黑就连到一起了
//printf("[out %d,flag=%d,re=%I64d,a[x]=%d]\n",x,flag,re,a[x]);
} ll farm() {
if(n==)return ;
mz(u);
dfs();
return f[][];
} int main() {
int i;
int x;
RD(n);
memset(head,-,sizeof(head));
en=;
REP(i,n-) {
scanf("%d",&x);
add(i+,x);
add(x,i+);
}
for(i=; i<n; i++)
scanf("%d",&a[i]);
printf("%I64d",farm());
return ;
}
CF461B Appleman and Tree (树DP)的更多相关文章
-
CF461B Appleman and Tree
CF461B Appleman and Tree 传送门 一道比较容易的树形DP. 考虑用\(dp[i][1]\)代表将\(i\)分配给\(i\)的子树内黑点的方案数,\(dp[i][0]\)代表将\ ...
-
CF 461B Appleman and Tree 树形DP
Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...
-
Codeforces 461B Appleman and Tree(木dp)
题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k ...
-
Codeforces 461B. Appleman and Tree[树形DP 方案数]
B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
-
[CF1060F]Shrinking Tree[树dp+组合计数]
题意 你有一棵 \(n\) 个点的树,每次会随机选择树上的一条边,将两个端点 \(u,v\) 合并,新编号随机为 \(u,v\).问最后保留的编号分别为 \(1\) 到 \(n\) 的概率. \(n\ ...
-
Codeforces 461B - Appleman and Tree 树状DP
一棵树上有K个黑色节点,剩余节点都为白色,将其划分成K个子树,使得每棵树上都仅仅有1个黑色节点,共同拥有多少种划分方案. 个人感觉这题比較难. 如果dp(i,0..1)代表的是以i为根节点的子树种有0 ...
-
Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】
题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...
-
codeforces Round #263(div2) D. Appleman and Tree 树形dp
题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...
-
Codeforces 161 D. Distance in Tree (树dp)
题目链接:http://codeforces.com/problemset/problem/161/D 题意: 给你一棵树,问你有多少对点的距离为k. 思路: dp[i][j]表示离i节点距离为j的点 ...
随机推荐
-
EQueue文件持久化消息关键点设计思路
要持久化的关键数据有三种 消息: 队列,队列中存放的是消息索引信息,即消息在文件中的物理位置(messageOffset)和在队列中的逻辑位置(queueOffset)的映射信息: 队列消费进度,表示 ...
-
C++STL - 模板的其他特性
之前已经总结过函数模板和类模板了,对于模板还有一些其他的特性,这篇主要介绍这些特性.主要都是一些特殊情况. 模板的其他特性 1.缺省参数 (1)类模板的模板参数可以带有缺省值,实例化该模板时,如果提供 ...
-
Loading加载小插件,用户可以选择html格式或canvas格式,自定义loading图片,canvas色彩搭配可根据个人喜好
;(function($) { $.Loading = function(options) { //暴漏插件默认值 $.Loading.defaults = { speed: 200, //弹出层淡出 ...
-
Git进行代码管理的心得
git从网上下载安装后 直接可在开始菜单中找到 打开可以看到一个类似命令窗口的东西 用代码进行用户名和邮箱的设置 虽然不知道为什么但是教程叫我这么做 (ˇˍˇ) 然后似乎就可以用了 进入文件夹 输入对 ...
-
跨域文件 clientaccesspolicy.xml
<?xml version="1.0" encoding="utf-8" ?> <access-policy> <cross-do ...
-
Shared Assembilies and Strongly Named Assemblies
the .NET Framework has in place to deal with versioning problems. Two Kinds of Assemblies, Two Kinds ...
-
显示Mac电脑下的隐藏文件
1. 在应用程序里打开终端, cd 你的文件夹名 ls -a 即可显示该文件夹下的所有隐藏文件 2. 如果你想打开整个系统的隐藏文件可以在终端下输入以下命令 defaults write com.ap ...
-
asp.net页面之间的跳转
调用Request.CurrentExecutionFilePath方法返回到当前页面 站点中常常要跳转页面,调用Request.CurrentExecutionFilePath方法能够获取当前页面的 ...
-
Asp.net mvc 知多少(十)
本系列主要翻译自<ASP.NET MVC Interview Questions and Answers >- By Shailendra Chauhan,想看英文原版的可访问http:/ ...
-
《前端之路》之 Cookie &;&; localStorage &;&; Session Storage 缓存相关
08: Cookie && localStorage && Session Storage 缓存相关 客户端.前端 存储 一. 起 因 首先解释下为什么想来写这个关于前 ...