在spark dataframe离开外部连接后,将null值替换为0。

时间:2022-09-25 12:24:01

I have two dataframes called left and right.

我有两个dataframes,分别叫做left和right。

scala> left.printSchema
root
|-- user_uid: double (nullable = true)
|-- labelVal: double (nullable = true)
|-- probability_score: double (nullable = true)

scala> right.printSchema
root
|-- user_uid: double (nullable = false)
|-- real_labelVal: double (nullable = false)

Then, I join them to get the joined Dataframe. It is a left outer join. Anyone interested in the natjoin function can find it here.

然后,我加入他们以获得加入的Dataframe。它是一个左外连接。任何对natjoin函数感兴趣的人都可以在这里找到它。

https://gist.github.com/anonymous/f02bd79528ac75f57ae8

https://gist.github.com/anonymous/f02bd79528ac75f57ae8

scala> val joinedData = natjoin(predictionDataFrame, labeledObservedDataFrame, "left_outer")

scala> joinedData.printSchema
|-- user_uid: double (nullable = true)
|-- labelVal: double (nullable = true)
|-- probability_score: double (nullable = true)
|-- real_labelVal: double (nullable = false)

Since it is a left outer join, the real_labelVal column has nulls when user_uid is not present in right.

由于它是左外连接,所以real_labelVal列在user_uid不存在的情况下为空。

scala> val realLabelVal = joinedData.select("real_labelval").distinct.collect
realLabelVal: Array[org.apache.spark.sql.Row] = Array([0.0], [null])

I want to replace the null values in the realLabelVal column with 1.0.

我想用1.0替换realLabelVal列中的null值。

Currently I do the following:

目前我做以下工作:

  1. I find the index of real_labelval column and use the spark.sql.Row API to set the nulls to 1.0. (This gives me a RDD[Row])
  2. 找到real_labelval列的索引并使用spark.sql。将null设置为1.0。(这给了我一个RDD[Row])
  3. Then I apply the schema of the joined dataframe to get the cleaned dataframe.
  4. 然后,我应用已连接的dataframe的模式来获取已清理的dataframe。

The code is as follows:

守则如下:

 val real_labelval_index = 3
 def replaceNull(row: Row) = {
    val rowArray = row.toSeq.toArray
     rowArray(real_labelval_index) = 1.0
     Row.fromSeq(rowArray)
 }

 val cleanRowRDD = joinedData.map(row => if (row.isNullAt(real_labelval_index)) replaceNull(row) else row)
 val cleanJoined = sqlContext.createDataFrame(cleanRowRdd, joinedData.schema)

Is there an elegant or efficient way to do this?

是否有一种优雅或高效的方法来做到这一点?

Goolging hasn't helped much. Thanks in advance.

Goolging没有帮助。提前谢谢。

1 个解决方案

#1


24  

Have you tried using na

你试过用na吗?

joinedData.na.fill(1.0, Seq("real_labelval"))

#1


24  

Have you tried using na

你试过用na吗?

joinedData.na.fill(1.0, Seq("real_labelval"))