求出凸包,显然四个点在凸包上。考虑枚举某点,再移动另一点作为对角线,容易发现剩下两点的最优位置是单调的。过程类似旋转卡壳。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 2010
#define vector point
#define nxt(i) (i%tail+1)
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n;
double ans;
const double eps=1E-8;
struct point
{
double x,y;
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
double operator *(const vector&a) const
{
return x*a.y-y*a.x;
}
bool operator <(const point&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}a[N],b[N];
double area(point x,point z,point y)
{
return (y-x)*(z-x);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1069.in","r",stdin);
freopen("bzoj1069.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a+1,a+n+1);
int tail=0;
for (int i=1;i<=n;i++)
{
while (tail>1&&(b[tail]-b[tail-1])*(a[i]-b[tail-1])<eps) tail--;
b[++tail]=a[i];
}
for (int i=n-1;i>=1;i--)
{
while (tail>1&&(b[tail]-b[tail-1])*(a[i]-b[tail-1])<eps) tail--;
b[++tail]=a[i];
}
for (int i=1;i<=tail;i++)
{
int p=nxt(i),q=nxt(i+2);
for (int j=i+2;j<=tail;j++)
{
while (nxt(p)!=i&&area(b[i],b[j],b[p])<area(b[i],b[j],b[nxt(p)])) p=nxt(p);
while (nxt(q)!=j&&area(b[i],b[q],b[j])<area(b[i],b[nxt(q)],b[j])) q=nxt(q);
ans=max(ans,area(b[i],b[j],b[p])+area(b[i],b[q],b[j]));//cout<<area(b[i],b[j],b[p])+area(b[i],b[q],b[j])<<endl;
}
}
printf("%.3f",ans/2);
return 0;
}
BZOJ1069 SCOI2007最大土地面积(凸包+旋转卡壳)的更多相关文章
-
bzoj1069: [SCOI2007]最大土地面积 凸包+旋转卡壳求最大四边形面积
在某块平面土地上有N个点,你可以选择其中的任意四个点,将这片土地围起来,当然,你希望这四个点围成的多边形面积最大. 题解:先求出凸包,O(n)枚举旋转卡壳,O(n)枚举另一个点,求最大四边形面积 /* ...
-
[BZOJ1069][SCOI2007]最大土地面积 凸包+旋转卡壳
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3669 Solved: 1451[Submit][Sta ...
-
luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳
LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...
-
bzoj 1069: [SCOI2007]最大土地面积 凸包+旋转卡壳
题目大意: 二维平面有N个点,选择其中的任意四个点使这四个点围成的多边形面积最大 题解: 很容易发现这四个点一定在凸包上 所以我们枚举一条边再旋转卡壳确定另外的两个点即可 旋(xuan2)转(zhua ...
-
BZOJ1069 SCOI2007 最大土地面积 凸包、旋转卡壳
传送门 在这里假设可以选择两个相同的点吧-- 那么选出来的四个点一定会在凸包上 建立凸包,然后枚举这个四边形的对角线.策略是先枚举对角线上的一个点,然后沿着凸包枚举另一个点.在枚举另一个点的过程中可以 ...
-
bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
-
【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳
因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...
-
[SCOI2007]最大土地面积(旋转卡壳)
首先,最大四边形的四个点一定在凸包上 所以先求凸包 有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个 然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分 所以还是要想 ...
-
[USACO2003][poj2187]Beauty Contest(凸包+旋转卡壳)
http://poj.org/problem?id=2187 题意:老题了,求平面内最远点对(让本渣默默想到了悲剧的AHOI2012……) 分析: nlogn的凸包+旋转卡壳 附:http://www ...
-
UVA 4728 Squares(凸包+旋转卡壳)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...
随机推荐
-
mysql扩展库-1
启用mysql扩展库 在php.ini文件中去配置mysql扩展库 extension=php_mysql.dll 可以通过 phpinfo() 查看当前php支持什么扩展库. 在sql扩展库中创建一 ...
-
cocos2d-x之加法计算器
bool HelloWorld::init() { if ( !Layer::init() ) { return false; } Size visibleSize = Director::getIn ...
-
JXL读取写入excel表格数据
问题描述: 使用java的jxl包创建.写入excel表格数据 问题解决: (1)说明 (2)写入execel数据 注: 以上是写入数据需要调用的函数接口 注: 具体接口调用过程,如上所示 (3)读取 ...
-
jquery获取标签内容,编辑内容
一.获取页面元素 三种方式获取页面中元素的内容. input标签使用:.val()获取 标签下的html及文本内容:.html() 仅获取标签下的纯文本内容:.text() <head> ...
-
linux正确重启MySQL的方法
修改了my.cnf,需要重启MySQL服务,正确重启MYSQL方法请看下面的文章 由于是从源码包安装的Mysql,所以系统中是没有红帽常用的servcie mysqld restart这个脚本 只好手 ...
-
哈,又一款超级简单的队列(MQ)实现方案来了~
开源的消息队列已经很多了,但大部分很重,实际环境下,很多可能只是使用到了一点功能而已,杀鸡使用牛刀,着实有些浪费了.很多时候,我们只想要一片绿叶,但它们给了我们整个的春天,很难消化.本着DIR精神, ...
-
『练手』手写一个独立Json算法 JsonHelper
背景: > 一直使用 Newtonsoft.Json.dll 也算挺稳定的. > 但这个框架也挺闹心的: > 1.影响编译失败:https://www.cnblogs.com/zih ...
-
eclipse安装使用fat打jar包
在线安装步骤: eclipse菜单栏 help >software updates >Search for new features to install>new update si ...
-
虚拟现实外包—动点飞扬软件专门承接VR/AR场景、游戏、项目外包
VR外包AR外包公司(虚拟现实外包公司)承接虚拟现实项目开发(企业.教育.游戏.企业大数据展示等) 有VR/AR.Unity3D项目.游戏外包业务欢迎 联系我们 QQ:372900288 TEL:13 ...
-
Java Spring 在线程中或其他位置获取 ApplicationContext 或 ServiceBean
部分一转载自:http://blog.csdn.net/yang123111/article/details/32099329 via @yang123111 部分二转载自:http://www.cn ...