coding:
from numpy import * import re def loadDataSet(): postingList = [['my', ' dog', 'has', 'flea', 'problem', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage', 'to', 'stop', 'him'], ['quit', 'buying', 'worthleaa', 'dog', 'food', 'stupid']] classsVec = [0, 1, 0, 1] return postingList, classsVec def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary" %word) return returnVec def trainNBO(trainMartix, trainCategory): numTrainDocs = len(trainMartix) numWords = len(trainMartix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(numWords) p1Num = ones(numWords) p0Demo = 2.0 p1Demo = 2.0 for i in range(numTrainDocs): if trainCategory[i-1] == 1: p1Num += trainMartix[i] p1Demo += sum(trainMartix[i]) else: p0Num += trainMartix[i] p0Demo += sum(trainMartix[i]) p1Vect = log(p1Num/p1Demo) p0Vect = log(p0Num/p0Demo) return p0Vect, p1Vect, pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify*p1Vec) + log(pClass1) p0 = sum(vec2Classify*p0Vec) + log(1.0 - pClass1) if p1 > p0: return 1 else: return 0 def testingNB(): listOPosts, listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat = [] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V, p1V, pAb = trainNBO(array(trainMat), array(listClasses)) testEntry = {'love', 'my', 'dalmation'} thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry,'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)) testEntry = {'stupid', 'garbage'} thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry,'classified as:', classifyNB(thisDoc, p0V, p1V, pAb)) def textParse(bigSreing): listOfTokens = re.split(r'\w*', bigSreing) return (tok.lower() for tok in listOfTokens if len(tok) > 2) def spamTest(): docList = [] classList = [] fullText = [] for i in range(1, 26): wordList = textParse(open('email/spam/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList = textParse(open('email/ham/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList = createVocabList(docList) trainingSet = list(range(50)) testSet = [] for i in range(20): randIndex = int(random.uniform(0, len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat = [] trainClasses = [] for docIndex in trainingSet: trainMat.append(setOfWords2Vec(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V, p1V, pSpam = trainNBO(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = setOfWords2Vec(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: errorCount += 1 print("the error rate is : ", float(errorCount)/len(testSet)) spamTest()