SuRF(Succinct Range Filter)是一种快速而紧凑的过滤器,同时支持点查询和范围查询(包括开区间查询、闭区间查询、范围计数),可以在RocksDB中用SuRF来替换Bloom过滤器。
FAST SUCCINCT TRIES
SuRF是基于FST(Fast Succinct Tries)的,这是一种同时支持点查询和范围查询,且具有高效的空间利用率的静态字典树。FST的设计是基于如下观察结果:字典树的上层包含了相对较少的节点,但却发生了相对较多的访问,而字典树的下层包含了相对较多的节点,但发生的访问较少。因此FST包含了LOUDS-Dense和LOUDS-Sparse两个部分,LOUDS-Dense优先考虑性能而不是空间占用,LOUDS-Sparse高效地利用空间从而限制了FST的总体空间占用。
下图(引用自论文)是一个FST的例子:
LOUDS-Dense
LOUDS-Dense中的每个节点包含了3个256位的bitmap和一个字节序列,他们的含义如下:
- D-Labels:标记该节点的分支表示的字符。如果一个节点的分支表示的字符在bitmap中的相应位是1,该位的下标为这个字符的ASCII码值。$是一个特殊字符,表示到该节点某个分支位置的前缀也是一个合法的key。
- D-HasChild:标记该节点的每个分支是否还有子节点。
- D-IsPrefixKey:标记到该节点某个分支为止的前缀是否也是一个合法的key。
- D-Values:是按序排列的一些与每个key对应的定长的值。
两个公式:
- D-ChildNodePos(pos) = 256 ×rank1(D-HasChild, pos):计算第一个子节点的位置。
- ParentNodePos(pos) = 256 ×select1 (D-HasChild, ⌊pos/256⌋) :计算父节点的位置。
LOUDS-Sparse
LOUDS-Dense中的每个节点包含了2个字节序列和2个bitmap,他们的含义如下:
- S-Labels:标记该节点的分支表示的字符。
- S-HasChild:标记该节点的每个分支是否还有子节点。
- S-LOUDS:标记该节点的每个分支是否是该节点的第一个分支。
- S-Values:和D-Values一样。
三个公式:
- S-ChildNodePos(pos) = select1(S-LOUDS, rank1(S-HasChild, pos) + 1)
- S-ParentNodePos(pos) = select1(S-HasChild, rank1(S-LOUDS, pos) - 1)
- S-ValuePos(pos) = pos - rank1(S-HasChild, pos) - 1
FST的优化
FST中最典型的操作就是rank、select和label search,FST对这三个都做了优化。
下图(引用自论文)是FST优化的一个例子:
- rank优化:对于一个bit-vector,每B位作为一个block,每个block在LUT中分配32位的空间来存储这个block起始位置的rank值。LOUD-Dense的B是64,这就保证了popcount指令在每次rank计算时只需要调用一次,LOUD-Sparse的B是512,适应于cacheline的大小,而且可以节省空间。
- select优化:对于每一个采样查询,在LUT中分配32位的空间来存储这次采样查询得到的select的值。
SUCCINCT RANGE FILTERS
为了平衡FPR和空间占用,基于FST的SuRF采用了删减的字典树,并有四种模式:
- SuRF-Base:对于用于构建SuRF的key,只截取在所有key中能唯一区分这个key的最短的前缀。这种模式的空间占用最小,但是FPR最高。
- SuRF-Hash:在SuRF-Base的基础上,对于每个key,在叶节点的Values里存储这个key的哈希值的后n位,当搜索到叶节点后,还需要比较这个哈希值的后n位。这种模式能极大的减小点查询的FPR,但是并不会减小范围查询的FPR,因为key的哈希值无法用于比较key的顺序。
- SuRF-Real:在SuRF-Base的基础上,对于每个key,存储这个key用于构建SuRF的前缀之后的n位,当搜索到叶节点后,还需要比较这n位。这种模式可以同时提升点查询和范围查询的FPR,但是提升的效果不如SuRF-Hash。
- SuRF-Mixed:SuRF-Hash和SuRF-Real的结合。
382 Love u
SuRF: Practical Range Query Filtering with Fast Succinct Tries 阅读笔记的更多相关文章
-
SuRF : Practical Range Query Filtering with Fast Succinct Tries
1. Introduction 在数据库管理系统中查找某些关键字会导致很大的磁盘I/O开销,针对这一问题,通常会使用一个内存开销小并且常驻内存的过滤器来检测该关键字是否存.比如现在常用的bloom过滤 ...
-
Fast R-CNN论文阅读笔记
论文地址:Fast R-CNN R-CNN的缺陷 (1)训练是一个多级的流水线.R-CNN首先在候选目标上微调一个卷积神经网络,使用log loss.然后使用SVMs充当目标分类器,以取代softma ...
-
elasticsearch term 查询二:Range Query
Range Query 将文档与具有一定范围内字词的字段进行匹配. Lucene查询的类型取决于字段类型,对于字符串字段,TermRangeQuery,对于数字/日期字段,查询是NumericRang ...
-
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...
-
【题解】【数组】【Prefix Sums】【Codility】Genomic Range Query
A non-empty zero-indexed string S is given. String S consists of N characters from the set of upper- ...
-
How to write date range query in Nest ElasticSearch client?
Looking at the source code, there are two overloads of the OnField method. When I use the the that t ...
-
SCU 4443 Range Query
二分图最大匹配,枚举. 可以计算出每一个位置可以放哪些数字,每个数字可以放在哪些位置,这样就可以建二分图了. 如果二分图最大匹配不到$n$,则无解.否则构造字典序最小的解,可以枚举每一位放什么数字,然 ...
-
第十五届四川省省赛 SCU - 4443 Range Query
先给你1~N的N个数 再给你每种最多50个的条件(ai,bi,ci) 或者[ai,bi,ci] (ai,bi,ci)表示下标ai到bi的最小值必为ci [ai,bi,ci]表示下标ai到bi的最大值必 ...
-
Fast R-CNN论文阅读摘要
论文链接: https://arxiv.org/pdf/1504.08083.pdf 代码下载: https://github.com/rbgirshick/fast-rcnn Abstract Co ...
随机推荐
-
将 JAR 转为 EXE – EXE4J 的使用教程(第一期)(转载)
http://www.iteknical.com/convert-jar-to-exe-phase-i-exe4j-tutorial/
-
OLE填充EXCEL 多SHEET
"1 设置行高 "参数说明:行/列号.行高/列宽.R-行 C-列 FORM row_column USING p_r p_width p_type. CASE p_type. WH ...
-
ASP.NET Web API与Rest web api(一)
本文档内容大部分来源于:http://www.cnblogs.com/madyina/p/3381256.html HTTP is not just for serving up web pages. ...
-
HDU-1037(水水水题)
Keep on Truckin' Problem Description Boudreaux and Thibodeaux are on the road again . . . "Boud ...
-
一个可以拓展的垂直多级导航栏 Demo
大四党忙忙碌碌找工作,博客荒废久矣,可谓:终日昏昏醉梦间,忽闻春尽强登山.因过竹院逢僧话,偷得浮生半日闲. 这是个垂直的导航栏,可以有无限多层的子级菜单,看代码注释就够了: <!DOCTYPE ...
-
java基础-修饰符
下列哪个修饰符可以使在一个类中定义的成员变量只能被同一包中的类访问?(B) A:private B:无修饰符 C:public D:procted 名称 说明 备注 public 可以被 ...
-
HDU 4916 树分治
Mart Master II Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
-
Spring Boot微服务架构入门
概述 还记得在10年毕业实习的时候,当时后台三大框架为主流的后台开发框架成软件行业的标杆,当时对于软件的认识也就是照猫画虎,对于为什么会有这么样的写法,以及这种框架的优势或劣势,是不清楚的,Sprin ...
-
微言netty:不在浮沙筑高台
1. 写作缘起 几年前,我在一家农业物联网公司,负责解决其物联网产品线.我们当时基于.net平台打造了一套实时数据采集系统,可以把数以百万级的传感器传送回来的数据采集入库并根据这些数据进行建模.在搭建 ...
-
利用Clang(Python接口)来解析C++
1 背景说明 最近希望利用开源库来解析C++头文件,并做一些自动翻译.自动注释之类的工作.经过两天的调研,发现clang最有希望满足需求.clang提供了三套接口来共外部使用,liblang最适合作为 ...