我想大家都知道python的gil限制,记得刚玩python那会,知道了有pypy和Cpython这样的解释器,当时听说是很猛,也就意味肯定是突破了gil的限制,最后经过多方面测试才知道,还是那德行…. 如果你的应用英语那种cpu密集运算的,p大部分情况都推荐使用多进程。
有些扯远了,我个人很喜欢用gevent这种协程的框架,但是不是所有的模块都可以这种用户态的线程… 不得已会用threading… 常用的模块一般都附带线程安全的问题.. 但是如果你自己的扩展模块,有时候会遇到线程安全,也就是线程锁的应用… …
python的多线程的同步与其他语言基本相同,主要包含:
Lock & RLock :用来确保多线程多共享资源的访问。
Semaphore :简单理解可以理解Lock互斥锁的加强版,他一个锁,可以控制多个thread的访问。。 Lock的话,只能是让一个线程来访问,Semaphore可以控制数目…
Event : event线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作。
Condition : 虽然他有wait notify这样的机制,实现的效果其实跟Event差不多
咱们先说下Lock和Rlock
下面是锁定和释放的过程
请求锁定 — 进入锁定池等待 — 获取锁 — 已锁定 — 释放锁
锁 Lock()
Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。
可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。
构造方法:
Lock()
实例方法:
acquire([timeout]): 使线程进入同步阻塞状态,尝试获得锁定。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。
# from xiaorui.cc import threading
lock = threading.Lock()
if mutex.acquire():
counter += 1
print "I am %s, set counter:%s" % (self.name, counter)
mutex.release()
重入锁 RLock()
RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。
可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。
构造方法:
RLock()
实例方法:
acquire([timeout])/release(): 跟Lock差不多。
Semaphore 信号量对象
信号量是一个更高级的锁机制。信号量内部有一个计数器而不像锁对象内部有锁标识,而且只有当占用信号量的线程数超过信号量时线程才阻塞。这允许了多个线程可以同时访问相同的代码区。
Semaphore管理一个内置的计数器,每当调用acquire()时内置计数器-1;调用release() 时内置计数器+1;
计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。
直接上代码,我们把semaphore控制为3,也就是说,同时有3个线程可以用这个锁,剩下的线程也之只能是阻塞等待了…
#coding:utf-8
#blog xiaorui.cc
import time
import threading semaphore = threading.Semaphore(3) def func():
if semaphore.acquire():
for i in range(3):
time.sleep(1)
print (threading.currentThread().getName() + '获取锁')
semaphore.release()
print (threading.currentThread().getName() + ' 释放锁') for i in range(5):
t1 = threading.Thread(target=func)
t1.start()
Event事件
Event内部包含了一个标志位,初始的时候为false。
可以使用使用set()来将其设置为true;
或者使用clear()将其从新设置为false;
可以使用is_set()来检查标志位的状态;
另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。
实例: (线程间相互通信)
import threading
import time class MyThread(threading.Thread):
def __init__(self, signal):
threading.Thread.__init__(self)
self.singal = signal def run(self):
print "I am %s,I will sleep ..."%self.name
self.singal.wait()
print "I am %s, I awake..." %self.name if __name__ == "__main__":
singal = threading.Event()
for t in range(0, 3):
thread = MyThread(singal)
thread.start() print "main thread sleep 3 seconds... "
time.sleep(3) singal.set()
threading.Condition
可以把Condition理解为一把高级的琐,它提供了比Lock, RLock更高级的功能,允许我们能够控制复杂的线程同步问题。threadiong.Condition在内部维护一个琐对象(默认是RLock),可以在创建Condigtion对象的时候把琐对象作为参数传入。Condition也提供了acquire, release方法,其含义与琐的acquire, release方法一致,其实它只是简单的调用内部琐对象的对应的方法而已。Condition还提供了如下方法(特别要注意:这些方法只有在占用琐(acquire)之后才能调用,否则将会报RuntimeError异常。):
Condition.wait([timeout]):
wait方法释放内部所占用的琐,同时线程被挂起,直至接收到通知被唤醒或超时(如果提供了timeout参数的话)。当线程被唤醒并重新占有琐的时候,程序才会继续执行下去。
Condition.notify():
唤醒一个挂起的线程(如果存在挂起的线程)。注意:notify()方法不会释放所占用的琐。
Condition.notify_all()
Condition.notifyAll()
唤醒所有挂起的线程(如果存在挂起的线程)。注意:这些方法不会释放所占用的琐。
对于Condition有个例子,大家可以观摩下。
from threading import Thread, Condition
import time
import random queue = []
MAX_NUM = 10
condition = Condition() class ProducerThread(Thread):
def run(self):
nums = range(5)
global queue
while True:
condition.acquire()
if len(queue) == MAX_NUM:
print "Queue full, producer is waiting"
condition.wait()
print "Space in queue, Consumer notified the producer"
num = random.choice(nums)
queue.append(num)
print "Produced", num
condition.notify()
condition.release()
time.sleep(random.random()) class ConsumerThread(Thread):
def run(self):
global queue
while True:
condition.acquire()
if not queue:
print "Nothing in queue, consumer is waiting"
condition.wait()
print "Producer added something to queue and notified the consumer"
num = queue.pop(0)
print "Consumed", num
condition.notify()
condition.release()
time.sleep(random.random()) ProducerThread().start()
ConsumerThread().start()