我为什么T了。。。。
Power Stations
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2517 Accepted Submission(s): 748
Special Judge
The power stations cannot work all the time. For each station there is an available time range. For example, the power station located on Town 1 may be available from the third day to the fifth day, while the power station on Town 2 may be available from the first day to the forth day. You can choose a sub-range of the available range as the working time for each station. Note that you can only choose one sub-range for each available range, that is, once the station stops working, you cannot restart it again. Of course, it is possible not to use any of them.
Now you are given all the information about the cable connection between the towns, and all the power stations’ available time. You need to find out a schedule that every town will get the electricity supply for next D days, one and only one supplier for one town at any time.
Each of the next M lines contains two integers a, b (1 <= a, b <= N), which means that Town a and Town b are connected directly. Then N lines followed, each contains two numbers si and ei, (1 <= si <= ei <= D) indicating that the available time of Town i’s power station is from the si-th day to the ei-th day (inclusive).
If the plan doesn’t exist, output one line contains “No solution” instead.
Note that the answer may not be unique. Any correct answers will be OK.
Output a blank line after each case.
1 2
2 3
3 1
1 5
1 5
1 5
4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5
0 0
0 0
No solution
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int S[], head[], vis[];
int U[maxn], D[maxn], L[maxn], R[maxn];
int C[maxn], X[maxn];
int n, m, ans, ret, d; void init()
{
for(int i = ; i <= m; i++)
D[i] = i, U[i] = i, R[i] = i + , L[i] = i - ;
L[] = m, R[m] = ;
mem(S, ), mem(head, -);
ans = m + ;
} void delc(int c)
{
L[R[c]] = L[c], R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
U[D[j]] = U[j], D[U[j]] = D[j], S[C[j]]--; } void resc(int c)
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
U[D[j]] = j, D[U[j]] = j, S[C[j]]++;
L[R[c]] = c, R[L[c]] = c;
} void add(int r, int c)
{
ans++, S[c]++, C[ans] = c, X[ans] = r;
D[ans] = D[c];
U[ans] = c;
U[D[c]] = ans;
D[c] = ans;
if(head[r] < ) head[r] = L[ans] = R[ans] = ans;
else L[ans] = head[r], R[ans] = R[head[r]],L[R[head[r]]] = ans, R[head[r]] = ans;
} bool dfs(int sh)
{
if(!R[])
{
ret = sh;
return true;
}
int c = R[];
delc(c);
for(int i = D[c]; i != c; i = D[i])
{
vis[sh] = X[i];
for(int j = R[i]; j != i; j = R[j])
delc(C[j]);
if(dfs(sh + )) return true;
for(int j = L[i]; j != i; j = L[j])
resc(C[j]);
}
resc(c);
return false;
} int g[][];
struct node
{
int s, t, id;
}Node[], tmp[]; int main()
{ int u, v, s, t;
while(~scanf("%d%d%d", &n, &m, &d))
{
mem(g, );
for(int i = ; i < m; i++)
{
rd(u), rd(v);
g[u][v] = g[v][u] = ;
}
m = n * d + n;
init();
int cnt = ;
rap(i, , n)
{
g[i][i] = ;
rd(Node[i].s), rd(Node[i].t);
++cnt;
add(cnt, n * d + i);
tmp[cnt].s = , tmp[cnt].t = , tmp[cnt].id = i;
rap(j, Node[i].s, Node[i].t)
{
rap(k, j, Node[i].t)
{
++cnt;
add(cnt, n * d + i);
tmp[cnt].s = j, tmp[cnt].t = k, tmp[cnt].id = i;
rap(a, , n)
if(g[i][a])
rap(b, j, k)
add(cnt, (a - ) * d + b);
}
} } if(!dfs())
{
printf("No solution\n");
}
else
{
mem(X, ), mem(C, );
rep(i, , ret)
{
X[tmp[vis[i]].id] = tmp[vis[i]].s;
C[tmp[vis[i]].id] = tmp[vis[i]].t;
}
rap(i, , n)
printf("%d %d\n", X[i], C[i]);
}
printf("\n");
} return ;
}
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ; #define REP( i , a , b ) for ( int i = a ; i < b ; ++ i )
#define REV( i , a , b ) for ( int i = a - 1 ; i >= b ; -- i )
#define FOR( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define FOV( i , a , b ) for ( int i = a ; i >= b ; -- i )
#define REC( i , A , o ) for ( int i = A[o] ; i != o ; i = A[i] )
#define CLR( a , x ) memset ( a , x , sizeof a ) const int MAXN = ;
const int MAXM = ;
const int MAXNODE = ; struct Node {
int l , r , idx ;
Node () {}
Node ( int l , int r , int idx ) : l ( l ) , r ( r ) , idx ( idx ) {}
} ; struct DLX {
int U[MAXNODE] , D[MAXNODE] , L[MAXNODE] , R[MAXNODE] ;
int row[MAXNODE] , col[MAXNODE] ;
int S[MAXM] , H[MAXM] ;
int deep , ans[MAXN] ;
int n , m ;
int size ; int N , M , DD ;
int X[MAXN] , Y[MAXN] ;
Node node[MAXM] ;
int G[MAXN][MAXN] ; void remove ( int c ) {
L[R[c]] = L[c] ;
R[L[c]] = R[c] ;
REC ( i , D , c )
REC ( j , R , i ) {
D[U[j]] = D[j] ;
U[D[j]] = U[j] ;
-- S[col[j]] ;
}
} void resume ( int c ) {
REC ( i , U , c )
REC ( j , L , i ) {
++ S[col[j]] ;
U[D[j]] = j ;
D[U[j]] = j ;
}
R[L[c]] = c ;
L[R[c]] = c ;
} int dance ( int d ) {
if ( R[] == ) {
deep = d ;
return ;
}
int c = R[] ;
REC ( i , R , )
if ( S[c] > S[i] )
c = i ;
//printf ( "ok\n" ) ;
remove ( c ) ;
REC ( i , D , c ) {
ans[d] = row[i] ;
REC ( j , R , i )
remove ( col[j] ) ;
if ( dance ( d + ) )
return ;
REC ( j , L , i )
resume ( col[j] ) ;
}
resume ( c ) ;
return ;
} void link ( int r , int c ) {
++ size ;
++ S[c] ;
row[size] = r ;
col[size] = c ;
U[size] = U[c] ;
D[size] = c ;
D[U[c]] = size ;
U[c] = size ;
if ( ~H[r] ) {
R[size] = H[r] ;
L[size] = L[H[r]] ;
R[L[size]] = size ;
L[R[size]] = size ;
}
else
H[r] = L[size] = R[size] = size ;
} void init () {
CLR ( H , - ) ;
FOR ( i , , n ) {
S[i] = ;
L[i] = i - ;
R[i] = i + ;
U[i] = i ;
D[i] = i ;
}
L[] = n ;
R[n] = ;
size = n ;
} void solve () {
int x , y ;
n = N * DD + N ;
m = ;
init () ;
CLR ( G , ) ;
CLR ( node , ) ;
REP ( i , , M ) {
scanf ( "%d%d" , &x , &y ) ;
G[x][y] = G[y][x] = ;
}
FOR ( i , , N )
G[i][i] = ;
FOR ( idx , , N ) {
scanf ( "%d%d" , &x , &y ) ;
int tmp = N * DD + idx ;
++ m ;
link ( m , tmp ) ;//none select
node[m] = Node ( , , idx ) ;
FOR ( i , x , y )
FOR ( j , i , y ) {
++ m ;
link ( m , tmp ) ;
node[m] = Node ( i , j , idx ) ;
FOR ( a , , N )
if ( G[idx][a] )
FOR ( b , i , j )
link ( m , ( a - ) * DD + b ) ;
}
}
if ( !dance ( ) )
printf ( "No solution\n" ) ;
else {
CLR ( X , ) ;
CLR ( Y , ) ;
REP ( i , , deep ) {
X[node[ans[i]].idx] = node[ans[i]].l ;
Y[node[ans[i]].idx] = node[ans[i]].r ;
}
FOR ( i , , N )
printf ( "%d %d\n" , X[i] , Y[i] ) ;
}
printf ( "\n" ) ;
} } dlx ; int main () {
while ( ~scanf ( "%d%d%d" , &dlx.N , &dlx.M , &dlx.DD ) )
dlx.solve () ;
return ;
}
Power Stations
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2517 Accepted Submission(s): 748
Special Judge
The power stations cannot work all the time. For each station there is an available time range. For example, the power station located on Town 1 may be available from the third day to the fifth day, while the power station on Town 2 may be available from the first day to the forth day. You can choose a sub-range of the available range as the working time for each station. Note that you can only choose one sub-range for each available range, that is, once the station stops working, you cannot restart it again. Of course, it is possible not to use any of them.
Now you are given all the information about the cable connection between the towns, and all the power stations’ available time. You need to find out a schedule that every town will get the electricity supply for next D days, one and only one supplier for one town at any time.
Each of the next M lines contains two integers a, b (1 <= a, b <= N), which means that Town a and Town b are connected directly. Then N lines followed, each contains two numbers si and ei, (1 <= si <= ei <= D) indicating that the available time of Town i’s power station is from the si-th day to the ei-th day (inclusive).
If the plan doesn’t exist, output one line contains “No solution” instead.
Note that the answer may not be unique. Any correct answers will be OK.
Output a blank line after each case.
1 2
2 3
3 1
1 5
1 5
1 5
4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5
0 0
0 0
No solution
Power Stations HDU - 3663的更多相关文章
-
搜索(DLX):HDU 3663 Power Stations
Power Stations Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
-
【HDU 3663】 Power Stations
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3663 [算法] 先建图,然后用Dancing Links求解精确覆盖,即可 [代码] #inclu ...
-
[DLX精确覆盖] hdu 3663 Power Stations
题意: 给你n.m.d,代表有n个城市.m条城市之间的关系,每一个城市要在日后d天内都有电. 对于每一个城市,都有一个发电站,每一个发电站能够在[a,b]的每一个连续子区间内发电. x城市发电了.他相 ...
-
【HDOJ】Power Stations
DLX.针对每个城市,每个城市可充电的区间构成一个plan.每个决策由N*D个时间及N个精确覆盖构成. /* 3663 */ #include <iostream> #include &l ...
-
hdu 3663 DLX
思路:把每个点拆成(d+1)*n列,行数为可拆分区间数.对所有的有i号点拆分出来的行都要建一条该行到i列的边,那么就能确保有i号点拆出来的行只能选择一行. #include<set> #i ...
-
Destroying the bus stations HDU - 2485(最小割点)
题意: 就是求最小割点 解析: 正向一遍spfa 反向一遍spfa 然后遍历每一条边,对于当前边 如果dis1[u] + dis2[v] + 1 <= k 那么就把这条边加入到网络流图中, 每 ...
-
【转载】图论 500题——主要为hdu/poj/zoj
转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...
-
hdu图论题目分类
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
-
HDU图论题单
=============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...
随机推荐
-
Python自动化之语法基础
1 第一个程序 hello world 在Linux环境下执行 vim hello.py #!/usr/bin/env python #指定解释器 print("hello world&qu ...
-
DDD的思考
概述 DDD领域驱动设计,它是对面向对象的的分析和设计(OOAD,Object Orient Analysis Design)的一个补充,对技术框架进行了分层规划,同时对每个类进行了策略和类型划分.领 ...
-
WizardDialog 进度条使用记录
开发RCP的朋友们经常会使用到导航窗口, 先简单介绍一下wizardDialog,基本上他的使用方法是这样的 首先有一个WizardDialog,在dialog里面需要放一个Wizard来控制页面Wi ...
-
安装Yeoman
先安装nodejs,我用的centos7,所以可以安装5的版本,如果不是请参考https://nodejs.org/en/download/package-manager/#enterprise-li ...
-
Formatting Excel File Using Ole2 In Oracle Forms
Below is the some useful commands of Ole2 to format excel file in Oracle Forms.-- Change font size a ...
-
【转】Android中visibility属性VISIBLE、INVISIBLE、GONE的区别
原文网址:http://blog.csdn.net/chindroid/article/details/8000713 在Android开发中,大部分控件都有visibility这个属性,其属性有3个 ...
-
制定一个apk路径 然后跳出安装界面
制定一个apk的路径 然后跳出界面让用户选择是否安装 我们系统有一个写好的Activity来协助我们完成这一功能 我们来看看它的清单文件 <?xml version="1.0" ...
-
泛函p121可分Hilbert空间都同构于l^2
如何理解最后面两句话, L^2与l^2同构 L^2里面 有理系数多项式 是可数稠密子集 所以L^2可分 可分Hilbert空间都同构于 l^2 傅里叶级数是一个稠密的子集
-
1.springboot:入门程序
一.Spring Boot 简介 官网英文: Spring Boot makes it easy to create stand-alone, production-grade Spring base ...
-
生成器-yield初接触
什么是生成器? 生成器的实质就是迭代器 在python中有三种方式来获取生成器 1. 通过生成器函数 2. 通过各种推导式实现生成器 3. 通过数据的转换也可以获取生成器 将函数中的return换成y ...