A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
Example:
Input: 1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0 Output: 6 Explanation: Given three people living at(0,0)
,(0,4)
, and(2,2)
:
The point(0,2)
is an ideal meeting point, as the total travel distance
of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
这道题让我们求最佳的开会地点,该地点需要到每个为1的点的曼哈顿距离之和最小,题目中给了提示,让从一维的情况来分析,先看一维时有两个点A和B的情况,
______A_____P_______B_______
可以发现,只要开会为位置P在 [A, B] 区间内,不管在哪,距离之和都是A和B之间的距离,如果P不在 [A, B] 之间,那么距离之和就会大于A和B之间的距离,现在再加两个点C和D:
______C_____A_____P_______B______D______
通过分析可以得出,P点的最佳位置就是在 [A, B] 区间内,这样和四个点的距离之和为AB距离加上 CD 距离,在其他任意一点的距离都会大于这个距离,那么分析出来了上述规律,这题就变得很容易了,只要给位置排好序,然后用最后一个坐标减去第一个坐标,即 CD 距离,倒数第二个坐标减去第二个坐标,即 AB 距离,以此类推,直到最中间停止,那么一维的情况分析出来了,二维的情况就是两个一维相加即可,参见代码如下:
解法一:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
return minTotalDistance(rows) + minTotalDistance(cols);
}
int minTotalDistance(vector<int> v) {
int res = ;
sort(v.begin(), v.end());
int i = , j = v.size() - ;
while (i < j) res += v[j--] - v[i++];
return res;
}
};
我们也可以不用多写一个函数,直接对 rows 和 cols 同时处理,稍稍能简化些代码:
解法二:
class Solution {
public:
int minTotalDistance(vector<vector<int>>& grid) {
vector<int> rows, cols;
for (int i = ; i < grid.size(); ++i) {
for (int j = ; j < grid[i].size(); ++j) {
if (grid[i][j] == ) {
rows.push_back(i);
cols.push_back(j);
}
}
}
sort(cols.begin(), cols.end());
int res = , i = , j = rows.size() - ;
while (i < j) res += rows[j] - rows[i] + cols[j--] - cols[i++];
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/296
类似题目:
Minimum Moves to Equal Array Elements II
Shortest Distance from All Buildings
参考资料:
https://leetcode.com/problems/best-meeting-point/
https://leetcode.com/problems/best-meeting-point/discuss/74186/14ms-java-solution
https://leetcode.com/problems/best-meeting-point/discuss/74244/Simple-Java-code-without-sorting.
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Best Meeting Point 最佳开会地点的更多相关文章
-
[LeetCode] 296. Best Meeting Point 最佳开会地点
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
-
[Swift]LeetCode296. 最佳开会地点 $ Best Meeting Point
A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
-
[LeetCode] 253. Meeting Rooms II 会议室 II
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...
-
LeetCode 252. Meeting Rooms (会议室)$
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...
-
[LeetCode] 253. Meeting Rooms II 会议室之二
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...
-
[LeetCode] 252. Meeting Rooms 会议室
Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si ...
-
[LeetCode] Best Meeting Point
Problem Description: A group of two or more people wants to meet and minimize the total travel dista ...
-
[LeetCode#253] Meeting Rooms II
Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...
-
[LeetCode#252] Meeting Rooms
Problem: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2] ...
随机推荐
-
【Android 基础】Animation 动画介绍和实现
在前面PopupWindow 实现显示仿腾讯新闻底部弹出菜单有用到Animation动画效果来实现菜单的显示和隐藏,本文就来介绍下吧. 1.Animation 动画类型 Android的animati ...
-
HDU 4315:Climbing the Hill(阶梯博弈)
http://acm.hdu.edu.cn/showproblem.php?pid=4315 题意:有n个人要往坐标为0的地方移动,他们分别有一个位置a[i],其中最靠近0的第k个人是king,移动的 ...
-
从零开始学android开发-用Intent启动Activity的方法
启动另外一个Activity,可以有的方法有用setClass()和Component Name 1. 先说在setClass启动一个Activity的方法吧: Intent intent = new ...
-
用Verilog实现IIC通讯
注意,此代码是错误代码,并不能实现想要的结果. 之所以留着,因为里面的enable 是独立开来的思想值得借鉴.就是控制单元和运算单元分开(我也是借鉴别人的实现思想).具体用verilogHDL实现II ...
-
java23种设计模式详解(转)
设计模式(Design Patterns) ——可复用面向对象软件的基础 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了 ...
-
Element ui表格展示图片问题
当需要遍历图片时,不能直接使用prop绑定值,具体 代码如下 <el-table-column label="头像" width="100"> &l ...
-
CentOS7 源码编译安装Tengine
简介 Tengine是由淘宝网发起的Web服务器项目.它在Nginx的基础上,针对大访问量网站的需求,添加了很多高级功能和特性.它的目的是打造一个高效.安全的Web平台. 发展 Tengine的性能和 ...
-
正则求解@"; (?<;=^\[length=)(\d+)(?=\])";
举个例子 [length=1548]这个正则 就是匹配 length的值了(1548)(?<=exp)匹配之后的(?=exp)匹配表达式之前的^是边界,在行首例如 aa[length=1548] ...
-
Android开发之SurfaceView
SurfaceView介绍 通常情况程序的View和用户响应都是在同一个线程中处理的,这也是为什么处理长时间事件(例如访问网络)需要放到另外的线程中去(防止阻塞当前UI线程的操作和绘制).但是在其他线 ...
-
hdu 1874 畅通工程 【spfa and dijkstra实现】
题目 spfa: #include <bits/stdc++.h> using namespace std; const int maxn = 205; const int INF = 0 ...