生成全局唯一ID的3个思路

时间:2022-09-23 11:32:29

标识(ID / Identifier)是无处不在的,生成标识的主体是人,那么它就是一个命名过程,如果是计算机,那么它就是一个生成过程。如何保证分布式系统下,并行生成标识的唯一与标识的命名空间有着密不可分的关系。在世界里,「潜意识下的命名空间里,相对的唯一标识」是普遍存在的,例如:

  1. 每个人出生的时候,就获得了一个「相对的唯一标识」——姓名。

  2. 城市的道路,都基本上采用了唯一的命名(当然这也需要一个 过程 )。

显然,对于每个标识,都需要有一个命名空间(namespace),来保证其相对唯一性。

可以说,在人的意识里,对于的实体的描述是基于名字进行的,人们并不希望同名的出现太多,这会在沟通过程中的产生理解困难。

对于人来说,在家庭里会有小名,在社会中会有正式名字,在社交过程中还会产生绰号。

在中国,对于企业来说,除了企业有名称之外,还有组织机构代码证、有税务登记证、有工商营业执照,并分别对应三个编号。(当然,目前五证合一也在进行中)。

回到计算机领域,围绕主机在网络上的地址,在不同的命名空间中,都会存在一个「相对的唯一标识」用来描述一个实体:

  1. 每个以太网网卡,都有一个48-bit 的MAC地址

  2. 每个MAC地址,可能有一个或者多个IP地址

  3. 每个网卡,都可能有一个或者多个IP地址

  4. 每个IP地址,都可能有多个域名

  5. 当然,每个主机,都会有一个主机名

接续上面的例子,事实上,MAC地址是由 IEEE Standards Association Registration Authority 完成地址段的分配。

对于目前的 1530 个*根域(gTLD),以及 IPv4 / IPv6 地址,都由IANA对其进行管理。

上面我通过类比的方式简单介绍了标识,总结来说它是无处不在的。我们在理解技术里的ID的同时,一定要联系生活中的场景,对比着琢磨和分析。

  • 标识是从一个典型的场景,对客观事物进行统一编码的过程。

  • 采用 半集中与半自主相结合 的方法,是一种实现「分而治之」十分普遍和有效的设计模式。

  • 标识的唯一性是根据命名空间紧密相关的。

标识的使用

在不同命名空间中实现标识的转换

在中国,对于人名,通常是由*局出入境管理局完成中文至英文的翻译,同时,他们会把翻译结果写到数据库中,印到护照上。 这中间的翻译规则,通常是根据中文与汉语拼音、汉语拼音与英文字母的两次转换关系完成的。

对于计算机网络,则会有 NAT完成IP地址间的转换,RAP/RARP完成IP地址与MAC地址的双向转换,DNS完成域名至IP地址的转换。

可是,为什么需要那么多不同命名空间的标识标识一个实体?可能最直观的回答通常是这样:

  • 域名为了方便人的记忆与使用

  • IP地址是为了更广范围的计算机互联

  • MAC则是为了在物理上保证唯一

  • OSI开放系统互联7层模型决定的

人们会在不同的领域(也是命名空间)中定义自己的命名规范,这可以认为是领域主权的体现,同时伴生的会是一套与相关领域标识的转换协议。

结构化与别名效应

结构化是把数据的元信息以位置的方式固化是数据中。也就是说,代表某个意义的信息,一定会出现在一个约定好的位置上。

由于标识是被人经常使用的,那么在使用过程中会对大脑形成一定的训练。

人在看到了010-XXXXXXXX,021-XXXXXXXX号码之后,自然而言会产生条件反射,认为两者分别代表了北京和上海;同样的人在看到了139和186之后,分别产生了中国移动以及中国联通的运营商联想。

对于使用者,这种场景,数字类似是一个名称别名。对于程序员,这十分接近「数据字典」的设计模式。

标识转换过程的两面性

别名和正名,同样是来自于两个不同命名空间的标识,之间自然而然的会进行转换。

当然,人们也不会忘记去Hack这些转换协议的设计。

一些是有益的,是实现了更为便利的应用场景。例如:将不同的域名指向相同的IP地址(使用A或者CNAME记录),并结合相关软硬件实现「虚拟主机」,达到资源复用的目的。

一些却是有害的,例如,诈骗电话也经常采用改号的方法,让接听者误以为那是来自某个官方的外呼电话。

同样的,在计算机领域,一样有DNS劫持、DNS污染。

有矛就有盾,进行安全性扩展的 DNSSEC 就是为了对DNS结果,验证不存在性和校验数据完整性验证,不过依然没有实现全面部署。

小结

  • 在关注如何生成标识的同时,还需要关注标识的易用性和直观性
    不同命名空间的标识,在互通时需要进行转换

  • 转换的过程,可能是一个简单的规则,也可能是一个独立第三方服务

  • 标识的唯一性是基本诉求,同时嵌入其他维度的信息是减少实时关联查询的有效手段

思路一:基于数据库生成

标识的生成方法有很多,有集中式的,分布式的;有后端的,前端的,当然还有人工的。 并没有一种通用的生成方法来适应各种应用场景。

人工生成的确是一种方式,比如电子邮箱,微信ID,各种论坛的账号。在人想出标识的那一刻,是无法判断是否是唯一的,对这种生成方式的结果,显然在录入时都需要进行唯一性校验。所以,下面描述的几种生成方式,是在生成的那一刻就在一个命名空间内唯一,而不再需要进行唯一性校验。

而基于数据库生成,一般包含以下几种:

  • MySQL(5.6) AUTO_INCREMENT 特性

  • Postgres(REL 9.6 Stable) SEQUENCE 特性

  • Oracle 数据库的 SEQUENCE 特性,有知道这一特性如何实现的,可以在 知乎 做一下解答。

  • Flickr Ticket Servers ,同时支持Sharding (文章发表于2010年2月8日,算法上线于2006年1月13日)。

一般地,这种类型的生成方案,都可以设置其实初始值,以及增量步长。

思路二:基于分布式集群协调器生成

在不使用数据库的情况下,通过一个后台服务对外提供高可用的、固定步长标识生成,则需要分布式的集群协调器进行。

一般的,主流协调器有两类:

  • 以强一致性为目标的:ZooKeeper为代表

  • 以最终一致性为目标的:Consul为代表

ZooKeeper的强一致性,是由Paxos协议保证的;Consul的最终一致性,是由Gossip协议保证的。

在步长累计型生成算法中,最核心的就是保持一个累计值在整个集群中的「强一致性」。同时,这也会为唯一性标识的生成带来新的形成瓶颈。

思路三:划分命名空间并行生成

似乎对于分布式的ID生成,以Twitter Snowflake为代表的, Flake 系列算法,经常可以被搜索引擎找到,但似乎MongoDB的ObjectId算法,更早地采用了这种思路。MongoDB 1.0 是在2009年8月27日 发布 的,并且0.9.10(2009年8月24日发布)和1.0两个版本没有差异。

在*上,最早的一个关于ObjectId的问题(http://*.com/questions/2138687/whats-mongodb-hashs-size/2146071),时间是2010年1月27日。不知道Twitter的同学,是不是受此启发呢?

MongoDB ObjectId

12-byte MongoDB ObjectId 的结构是:

  • a 4-byte value representing the seconds since the Unix epoch,

  • a 3-byte machine identifier,

  • a 2-byte process id, and

  • a 3-byte counter, starting with a random value.

可以看出,这个方案所支持的最小划分粒度是「秒 * 进程实例」,单进程实例的每秒容量是 3-byte (24-bit),也就是接近16777216个ID。

有兴趣的,还可以进一步 看代码(MonogoDB 3.3.x Java Driver) 研究:Timestamp, Machine Identifier、Process Identifier、计数器的初始值分别是如何获得的:

1. Timestamp

生成全局唯一ID的3个思路


2. Machine Identifier

生成全局唯一ID的3个思路

3. Process ID

生成全局唯一ID的3个思路

4. COUNTER

生成全局唯一ID的3个思路

此处需要注意的是MongoDB的 NEXT_COUNTER 其初始值是一个随机数,这是有利于分库分表的。因为在小并发的条件下,非随机数的初始值,容易产生 偏库偏表, 不均匀的现象。

Twitter Snowflake

Twitter在2010年6月1日(在Flickr那篇文章发布不到4个月之后),Ryan King 在Twitter的Blog 撰文 写道:

  • Ticket Servers方案缺乏顺序的保证

  • 考虑过采用UUID,不过128-bit太长了

  • 也考虑过采用ZooKeeper所提供的 *Unique Naming* Seuence Nodes 所提供的 Unique Naming 特性,但是性能不能满足。(个人认为,Sequence Nodes的设计目标是解决分布式锁的问题,但不解决性能要求极高的ID生成问题,直接应用是一种Hack行为)

在这种情况下,Twitter给出了 64-bit 长的 Snowflake ,它的结构是:

  • 1-bit reserved

  • 41-bit timestamp

  • 10-bit machine id

  • 12-bit sequence

在过了不到4年,2014年的5月31日,Twitter 更新了 Snowflake 的 README,其中陈述了两个容易被忽视的事实:

  • "We have retired the initial release of Snowflake ..."

  • "... heavily relies on existing infrastructure at Twitter to run. "

可以看出,这个方案所支持的最小划分粒度是「毫秒 * 线程」,单线程(Snowflake 里对应的概念是 Worker)的每秒容量是12-bit,也就是接近4096。

翻一下Snowflake的 归档代码 (Scala),可以看到:

1. 关于初始化Sequence的处理

生成全局唯一ID的3个思路

可以看到此处Snowflake对于 sequence 的赋值为0。

2. 关于每秒超过4096个ID生成请求的处理

生成全局唯一ID的3个思路

noeqd

2011年11月23日,用Go语言实现的,基于Snowflake的 neoqd 出现了。

它的特点是,除了使用Go语言进行了实现,更是把ID生成做成了一个网络服务。支持客户端向ID生成服务申请ID。它还支持:

  • 简单预共享Token的客户端身份证认证(只是加强了那么一点点的安全性,可以忽略)

  • 支持批量获取ID,最多256个(因为使用一个byte表示申请个数)

同时,作者还建议使用 Doozerd 一个用Go语言写的 -- a highly-available, completely consistent store for small amounts of extremely important data. 进行Machine ID的分配。

(关于 ZooKeeper / Etcd / Consul / Doozerd 的比较,也是可以期待下)

Boundary Flake

2012年1月, Boundary Flake 同样的,用Erlang语言把Snowflake,变成了一个网络服务,提供128-bit长的ID生成服务。

不过,根据其RoadMap的描述,这个项目并没100%完成。例如,批量的ID生成,HTTP 接口,客户端Library都列在里面待实现。

CruftFlake

2012年7月, CruftFlake 更显然的,是想以一个PHP变种身份出现。

它在结构上与Snowflake基本一致,存在两个区别:

  • 在timestamp上的取值略有区别

  • 可以自行决定是否采用ZooKeeper作为协调器

基于LableOrg/java-uniqueid

2014年7月18日,LableOrg 写了一个通过ZooKeeper进行协调的,128-bit长的算法 java-uniqueid。其 结构组成 依然十分相似:

  • Timestamp

  • Sequence counter

  • Generator IDs

  • Cluster IDs

前台浏览器生成

这里的前台,主要是指以「浏览器」为代表的客户端。

2015年2月16日,Sudhanshu Yadav (看面相像印度人),用Javascript写了Flake的又一个变种实现 FlakeId 。其核心代码是:

生成全局唯一ID的3个思路

它的Machine Identifier则是作为构造函数的选项参数 options.mid 传入。

生成全局唯一ID的3个思路

没思路,全自主随机生成?

选择UUID?

可以说,成熟的、全自主生成方案,可能只有 128-bit UUID 一种,具体的说,是UUID Version 4。另外,微软对它实现,称之为 GUID 。

一般的,使用的最多的是UUID Version 4,很大程度上是因为其依赖的其他服务最少。

这里,通过python (2.5+) 对UUID的实现,体验一下UUID的生成效果:

生成全局唯一ID的3个思路

另外,我们看一下网卡的MAC地址:

生成全局唯一ID的3个思路

(因为UUID Version 1会泄露网卡的MAC地址,所以我对MAC地址做了下小手术)

可以看到UUID Version 1 最后一组数值 985aeb899615 与网卡的 MAC地址是一样一样的 98:5a:eb:89:96:15。

个人一直认为,采用UUID Version 4是一种偷懒的,没有针对具体应用场景,缺乏必要设计的做法。

一方面,它是依据概率确保无碰撞的,计算的过程与概率上的「生日问题」是一样的,不再展开。

另一方面,从使用的角度,UUID还有以下缺点:

  • 太长,即便是转换成36个字符,不利于输入

  • 过于随机,没有规律,在开发调试、线上故障定位,都容易看花眼。

  • 如果作为数据库主键,对索引不利。

基于Hash算法?

众多的Hash算法,例如「MD5 / SHA-1 / SHA-2 / SHA-3」,都看可以对内容进行摘要计算,形成一个定长的Hash值。

这些Hash算法,都会存在一个Hash冲突的问题,以及碰撞攻击的问题。

以UUID类似,其文本化之后的随机特征,不太适合应用在ID生成方面。

标识生成总结
  • 人工生成的标识,在相同的命名空间里,需要后续唯一性验证才能保证唯一

  • 由计算机生成,在低并发的场景下,适合通过一个服务集中生成,并保障此服务的高可用性

  • 由计算机生成,在高并发的场景下,适合通过一个保障命名空间独立的命名规范下,由多个服务并行生成。

  • 采用步长和增长相结合的生成算法,本质上都是对某个状态进行累积的结果。

  • 对于取模进行分库分表的场景,初始化值随机有利于均匀分布。

  • (MongoDB 的 ObjectId 更是Flake系列算法的鼻祖,并在初始值上进行了随机化处理)

设计一个「合适」的标识

1. 区分实体和关系

实体是点,而关系是线。

一般而言,面向实体的标识生成速度,要小于面向关系的生成速度。

具体的例子,以电商为例:买家、卖家、商品这些实体的录入速度,要远比订单生成小的多。也因此,主数据要比交易数据稳定的多。

并且,关系还可能包含层次关系,进而体现为一个依赖树。

面向实体的标识

面向实体的标识,更多的与概念相关(名称)、与形态相关(型号),有很多的人为因素参与,随机因素有限,命名的主体也来自于人。

对于实*造,为任意一个产品进行标识,大致会分为六个方面:品牌、品类、品名,型号、批号、产品序列号。

对于前四者,更多的是人为的进行命名。例如,给定中文,找到对应英文,再进行缩写。

对于批号,则会增加一些时间因素,以关联到产品的生产时间。例如,采用20160925表示具体某一天,或者采用201640表示具体某一周。(一般来说,同一个批号的产品,所使用的原材料是也是同一批。)

对于产品序列号,最简单的是采用自然数法进行编号。

这一类的标识,在分布式系统下,在系统并发量小,集群规模小的情况下,可以采用基于数据库或者协调器的生成方案。

面向关系的标识

自然的,关系源于两个或两个以上的实体之间所进行的某一个活动,并且具有一定的时效性。

常见的关系的表现形式有:交易流水号,会话标识等等。

这一类的标识,在分布式系统下,在系统并发量大,应当采用基于服务的内置生成方案。唯一依赖的是在实例部署时、启动前,为期分配唯一的Machine Identifier。这个Machine Identifier可以交由以强一致性保证的协调器完成。

当然,在系统并发量小的情况下,任然可以采用基于数据库的生成方案,因为没有协调器集群的参与,系统整体的复杂度更低,更利于维护。

2. 标识的容量

任何采用文字所表达的标识,最终在计算机里,都会根据一定的格式,被转换为字节byte进行处理,这个过程称之为「序列化」。 这种序列化方式,本质上是一种编码方式。

变长编码

一般来说,采用变长的编码方式,主要的目的是为了应对不可预期大小的信息量。

常见的有 TLV(Type-Length-Value) 方式。 Google的 Protocol Buffers 非常有意思地采用了 Base 128 Varints 的编码方式。

本质上,一个 URI 也是一个变长标识,它可以标识一个功能,也可以标识一个虚拟实体。

RESTful是对此类命名方式的一种实践方式,也是对 URI和HTTP协议组合之后,「表征力」的一个深入挖掘。

定长编码

在回顾一下前文所提到的IPv4地址,它似乎、可能、或许会在2019年 完全枯竭, 因为它只有32-bit。相比之下,MAC地址有48-bit,IPv6有128-bit。即便是它们都没那么容易枯竭,但也不代表由于人为因素,导致无法有效使用。

再回想下,每个人的身份证、手机号码,都是采用定长的形式进行编码。

选择定长有利于预先分配计算机资源,不管是内存、文件系统,还是数据库。同时,对于人的心理来说,可预期性大大增强了。

标识的命名空间

命名空间有三个层面:

  • 异构切分:对于不同的场景和视角,以树形进行层次划分。

  • 同构切分:对于异构切分的结果,切分出不同的分片。

  • 时间切分:对于同一个分片,在不同时间点上的状态。

一般地:

  • 首先,采用并行无状态的生成算法,一般都采用时间作为首要的命名空间,并且此命名空间的实效性小于生成者的重启时间

  • 其次,采用生成器实例自身的标识作为次要命名空间,以保证各个生成器的时间即便是不同步也不会产生重复标识

同时,需要注意的是,这可能导致唯一标识产生,大段跳跃,原因有:

  • 单位时间的并发量远小于子命名空间的容量

  • 生成器重启

  • 标识的冗余

不管标识是在运行时的内存出现,还是记录到数据库中或者文件里,它都需要占用硬件资源。

还是拿身份证举例,一方面,一个18个字符长度的身份证,那么需要18个字节进行存储。18个字节意味着144-bit,比IPv6的128bit还长。

如果简单的标识全世界每个人,以目前全地球超过70亿人口的总量,那么33个bit就足够了。

采用这种冗余设计的原因,一方面是「半集中,半自主」和现实的行政、地域结构对齐,另一方面是实现关联信息的集成。

小结

  • 标识编码后的长度,则决定了一个标识方案的整体容量。

  • 在一个统一的命名空间内,有多个标识生成者并行生成时,需要划分独立的子命名空间,以保证生成的标识在整个命名空间内唯一。

  • 单个命名空间的标识,承载的信息量有限,在标识的使用过程中,需要扩展与包含一些其他视角的信息以进行冗余。

3. 标识的文本兼容

和人工取名字不一样,自动生成ID的主体,是计算机本身,但使用这个ID的主体,有两个:人和计算机。

对于计算机,最擅长处理的是结构化数组、条形码或者二维码;而对人,最擅长使用的是文本、图形或者视频。

一般而言,在大量的RESTful设计的应用,其URI中会包含大量的ID,用来标识用户、商品、订单等等,它们经常会出现在URI中。

以ASCII编码为基础的各种文本化编码算法,从Base16开始,正常的有Base32,Base64,Base58,Base85等等。

其中,Base16是最为「字节友好」的,因为不需要进行任何Padding操作,就可以以把 4-bit/half-byte 转换为 [0-9a-f] 这十六个字符,因此Base16还有别名:Hex。另外对于键盘输入,这16个英文字母,又是相对纯数字之外,最方便的。

而Base32, Base64等等,都需要Padding。因为Base32是每 5-bit 进行分组编码,Base64则是 6-bit ,都无法直接对齐一个 byte(8-bit)。

另外,Base16还对 URI 友好,不需要进行任何的 URLEncode/Decode操作。

以64-bit长的ID为例,它既可以转化为 long,也可以Base16成为16个字符的``HexString``,同时它大小写不敏感。

相比之下,如果采用Base64的文本化方案,其长度虽然少了5个字符,为11个,但其大小写敏感,不利于人机交互的输入,还会包含URI不友好,还会被转义为「 %3D」的符号「=」。

一个精巧的标识文本化算法,并不应该简单的把一个二进制值转为HexString。在日志里,应该有相应的解码算法,解析出符合人类阅读的字符,比如:精确到秒、且带格式时间,生成改标识的主体,等等。

4. 标识的安全性

标识的信息泄露

采用连续,或者固定步长的标识,容易从一个标识猜测其他标识的存在性。

常见的例子有: 

  • 通过局域网扫描工具,扫描某个子网的活动的IP地址 

  • 通过端口扫描工具,扫描一个目标主机开放的端口,以初步确定主机操作系统类型

另外,在物联网领域,如果采用的EPC编码,那么很容易通过连续编码,估计某个产品的具体产量。

标识的自校验能力

还是使用身份证号这个例子,根据国家标准(GB11643-1999),身份证号的前17位为本体码,最后1位为校验码。也就是说,它是通过前17位进行数学公式计算之后获得,主要目的是用于检验录入过程是否产生差错。

这样设计的好处是,每当输入完18位身份证号后,可以直接判断一个身份证号,是否在逻辑上是「合规的」,对于系统而言不用查询数据库,可以减少IO操作。不过,这不代表这个身份证号是有效的,也有可能是一个无效,但符合校验规则的身份证号。

由于标识的长度有限,能够加入的冗余信息较少,一般的基于公钥密码*的签名机制,都难以在一个短标识中嵌入。