C++内存分配及变长数组的动态分配

时间:2022-09-23 00:26:31

//------------------------------------------------------------------------------------------------

第一部分 C++内存分配

//------------------------------------------------------------------------------------------------

一。关于内存

 1、内存分配方式

  内存分配方式有三种:

  (1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在

。例如全局变量,static变量。

  (2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存

储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

  (3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自

己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

2.内存使用错误
      发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。

而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有

发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:
       * 内存分配未成功,却使用了它。

  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查

指针是否为NULL。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

  * 内存分配虽然成功,但是尚未初始化就引用它。

  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值

错误(例如数组)。 内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不

可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

  * 内存分配成功并且已经初始化,但操作越过了内存的边界。

  例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞

错,导致数组操作越界。

  * 忘记了释放内存,造成内存泄露。

  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次

程序突然死掉,系统出现提示:内存耗尽。

  动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误

(new/delete同理)。

  * 释放了内存却继续使用它。
 
  有三种情况:

  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新

设计数据结构,从根本上解决对象管理的混乱局面。

  (2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函

数体结束时被自动销毁。

  (3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

  【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存

  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

  【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。

  【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

二. 详解new,malloc,GlobalAlloc
    
 1.  new

new和delete运算符用于动态分配和撤销内存的运算符

new用法:

1>     开辟单变量地址空间

1)new int;  //开辟一个存放数组的存储空间,返回一个指向该存储空间的地址.int *a = new

int 即为将一个int类型的地址赋值给整型指针a.

2)int *a = new int(5) 作用同上,但是同时将整数赋值为5

2>    开辟数组空间

一维: int *a = new int[100];开辟一个大小为100的整型数组空间

一般用法: new 类型 [初值]

delete用法:

1> int *a = new int;

delete a;   //释放单个int的空间

2>int *a = new int[5];

delete [] a; //释放int数组空间

要访问new所开辟的结构体空间,无法直接通过变量名进行,只能通过赋值的指针进行访问.

用new和delete可以动态开辟,撤销地址空间.在编程序时,若用完一个变量(一般是暂时存储的数组),

下次需要再用,但却又想省去重新初始化的功夫,可以在每次开始使用时开辟一个空间,在用完后撤销它.

2.  malloc
  原型:extern void *malloc(unsigned int num_bytes); 
  用法:#i nclude <malloc.h>或#i nclude <stdlib.h> 
  功能:分配长度为num_bytes字节的内存块 
  说明:如果分配成功则返回指向被分配内存的指针,否则返回空指针NULL。 
  当内存不再使用时,应使用free()函数将内存块释放。 
  malloc的语法是:指针名=(数据类型*)malloc(长度),(数据类型*)表示指针. 
说明:malloc 向系统申请分配指定size个字节的内存空间。返回类型是 void* 类型。void* 表示未确定类型

的指针。C,C++规定,void* 类型可以强制转换为任何其它类型的指针。

malloc()函数的工作机制 
  malloc函数的实质体现在,它有一个将可用的内存块连接为一个长长的列表的所谓空闲链表。调用malloc

函数时,它沿连接表寻找一个大到足以满足用户请求所需要的内存块。然后,将该内存块一分为二(一块的大

小与用户请求的大小相等,另一块的大小就是剩下的字节)。接下来,将分配给用户的那块内存传给用户,并

将剩下的那块(如果有的话)返回到连接表上。调用free函数时,它将用户释放的内存块连接到空闲链上。到

最后,空闲链会被切成很多的小内存片段,如果这时用户申请一个大的内存片段,那么空闲链上可能没有可以

满足用户要求的片段了。于是,malloc函数请求延时,并开始在空闲链上翻箱倒柜地检查各内存片段,对它们

进行整理,将相邻的小空闲块合并成较大的内存块。
 
和new的不同
从函数声明上可以看出。malloc 和 new 至少有两个不同: new 返回指定类型的指针,并且可以自动计算所需

要大小。比如:
int *p;
p = new int; //返回类型为int* 类型(整数型指针),分配大小为 sizeof(int);
或:
int* parr;
parr = new int [100]; //返回类型为 int* 类型(整数型指针),分配大小为 sizeof(int) * 100;
而 malloc 则必须由我们计算要字节数,并且在返回后强行转换为实际类型的指针。
int* p;
p = (int *) malloc (sizeof(int));
第一、malloc 函数返回的是 void * 类型,如果你写成:p = malloc (sizeof(int)); 则程序无法通过编译,

报错:“不能将 void* 赋值给 int * 类型变量”。所以必须通过 (int *) 来将强制转换。
第二、函数的实参为 sizeof(int) ,用于指明一个整型数据需要的大小。如果你写成:
int* p = (int *) malloc (1);
代码也能通过编译,但事实上只分配了1个字节大小的内存空间,当你往里头存入一个整数,就会有3个字节无

家可归,而直接“住进邻居家”!造成的结果是后面的内存中原有数据内容全部被清空。

3.  GlobalAlloc
 
   VC中关于GlobalAlloc,GlobalLock,GlobalUnLock

调用GlobalAlloc函数分配一块内存,该函数会返回分配的内存句柄。 
调用GlobalLock函数锁定内存块,该函数接受一个内存句柄作为参数,然后返回一个指向被锁定的内存块的指

针。 您可以用该指针来读写内存。 
调用GlobalUnlock函数来解锁先前被锁定的内存,该函数使得指向内存块的指针无效。 
调用GlobalFree函数来释放内存块。您必须传给该函数一个内存句柄。
  
GlobalAlloc 
说明 
分配一个全局内存块 
返回值 
Long,返回全局内存句柄。零表示失败。会设置GetLastError 
参数表 
参数 类型及说明 
wFlags Long,对分配的内存类型进行定义的常数标志,如下所示: 
             GMEM_FIXED 分配一个固定内存块 
             GMEM_MOVEABLE 分配一个可移动内存块 
             GMEM_DISCARDABLE 分配一个可丢弃内存块 
             GMEM_NOCOMPACT 堆在这个函数调用期间不进行累积 
             GMEM_NODISCARD 函数调用期间不丢弃任何内存块 
             GMEM_ZEROINIT 新分配的内存块全部初始化成零 
dwBytes Long,要分配的字符数

GlobalLock  
函数功能描述:锁定一个全局的内存对象,返回指向该对象的第一个字节的指针
函数原型:
LPVOID GlobalLock( HGLOBAL hMem )
参数:
hMem:全局内存对象的句柄。这个句柄是通过GlobalAlloc或GlobalReAlloc来得到的
返回值:
调用成功,返回指向该对象的第一个字节的指针
调用失败,返回NULL,可以用GetLastError来获得出错信息
注意:
调用过GlobalLock锁定一块内存区后,一定要调用GlobalUnlock来解锁
  
  GlobalUnlock
函数功能描述:解除被锁定的全局内存对象
函数原型:BOOL GlobalUnlock( HGLOBAL hMem );
参数:hMem:全局内存对象的句柄
返回值:
非零值,指定的内存对象仍处于被锁定状态
0,函数执行出错,可以用GetLastError来获得出错信息,如果返回NO_ERROR,则表示内存对象已经解锁了
注意:    这个函数实际上是将内存对象的锁定计数器减一,如果计数器不为0,则表示执行过多个GlobalLock

函数来对这个内存对象加锁,需要对应数目的GlobalUnlock函数来解锁。如果通过GetLastError函数返回错误

码为ERROR_NOT_LOCKED,则表示未加锁或已经解锁。

示例:
// Malloc memory
hMem = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE, nSize);
// Lock memory
pMem = (BYTE *) GlobalLock(hMem);
..................
// Unlock memory
GlobalUnlock(hMem);
GlobalFree(hMem);

三 总结

灵活*是C/C++语言的一大特色,而这也为C/C++程序员出了一个难题。当程序越来越复杂时,内存的管理也

会变得越加复杂,稍有不慎就会出现内存问 题。内存泄漏是最常见的内存问题之一。内存泄漏如果不是很严重

,在短时间内对程序不会有太大的影响,这也使得内存泄漏问题有很强的隐蔽性,不容易被发现。 然而不管内

存泄漏多么轻微,当程序长时间运行时,其破坏力是惊人的,从性能下降到内存耗尽,甚至会影响到其他程序

的正常运行。另外内存问题的一个共同特点 是,内存问题本身并不会有很明显的现象,当有异常现象出现时已

时过境迁,其现场已非出现问题时的现场了,这给调试内存问题带来了很大的难度。

下载Windows Debug 工具, http://www.microsoft.com/whdc/devtools/debugging/default.mspx
安装后,使用其中的gflags.exe工具打开PageHeap,
gflags -p /enable MainD.exe /full
重新使用VS用调试方式运行,很快就找到了出错位置,因为在某个静态函数中笔误导致

在编写稳定的服务器程序时,这个工具尤为有用。

//------------------------------------------------------------------------------------------------

第二部分 数组的动态分配及实例

//------------------------------------------------------------------------------------------------

动态分配二维数组的一般方法是这样:假设数组存的数据类型是int
int **p=NULL; 
p=new int*[nWidth];
    if (!p){
        return NULL;
    }
    for (int j=0;j<nWidth;j++){
        p[j]=new int[nHeight];
        if (!p[j]){
            return NULL;
        }
    }
这段代码浅显易懂,先分配第1维,在循环分配第2维。假设二维数组是3×2的,每一句运行完后的内存情况如图所示(方格表示内存,xx表示随机数。下面是内存地址。当然,这个地址是个示意,事实不会分配到那的。):
第一句完后分配了3个内存单元

循环分配后,注意下面3段内存是不连续的。这样用下表p[n][m]操作数组没问题,如果整块内存操作就会有问题了。

原意是想把下面的3块6个内存单元清0,可是事与愿违,把从p开始后面6个内存单元清0了,p[]不能用了。p后面只有3个已分配的内存单元,却要操作6个,另外3个是未知区域。清了后面虚线的3块未知区域,这就很危险了,可能导致程序崩溃。
这样分配的内存需要循环释放。

对这个方法有一改进,如下:

int **p=NULL; 
   p=new int *[nWidth];
if (!p){
        return NULL;
    }
    p[0]=new int[nWidth*nHeight];
if (!p[0]){
   delete[] p;
        return NULL;
    }
    ZeroMemory(p[0],nWidth*nHeight*sizeof(int));
    for (int i=1;i<nWidth;i++){
        p[i]=p[i-1]+nHeight;
    }

这段代码解决了分配的空间不连续的问题。每一句运行完后的内存情况如图所示:

第一句和上面一样。

这6个内存单元是一次分配的,所以连续。

这个二维数组的数据首地址是p[0],p是第2维的索引首地址。所以如果要对二维数组进行整体的内存(缓冲区 buffer)操作,要以p[0]为操作对象的首地址。

到此,索引与对应的数据地址关联上了。这个二维数组既可以通过下表p[][]来操作,又可以操作缓冲区。操作缓冲区的函数比如memcpy,cfile的writehuge和readhuge使用起来很方便,省去了2次循环的麻烦。

至于释放,不必循环释放。因为new了2次,所以只需delete2次就行了:
if(!p){
   return;
}
    delete []p[0];
    p[0]=NULL;
    delete[] p;
    p=NULL;

 

(可参考 http://hi.baidu.com/jiaon/item/52017c5a145debcfd2e10c52)

二  实例

    1. <span style="font-size:14px;">// malloc2d.cpp : Defines the entry point for the console application.
    2. //
    3. #include "stdafx.h"
    4. #include <iostream>
    5. #include <stdlib.h>
    6. #include <string.h>
    7. using namespace std;
    8. //第一种方法,参考http://blog.csdn.net/blind20/article/details/5214507,分配连续空间
    9. void **malloc2d(int row,int col,int size)
    10. {
    11. void **arr;
    12. int indexsize=sizeof(void*)*row;//空出indexsize大小的空间用作? void*为什么不行?
    13. int totalsize=size*row*col;
    14. arr=(void**)malloc(indexsize+totalsize);
    15. if(arr!=NULL)
    16. {
    17. unsigned char *head;//博客中是void *head版本,但编译都通过不了,改成unsigned char* 后编译通过,但不明白运行结果为什么不对
    18. head=(unsigned char *)arr+indexsize;
    19. memset(arr,0,indexsize+totalsize);
    20. for(int i=0;i<row;i++)
    21. arr[i]=head+size*i*col;
    22. }
    23. return arr;
    24. }
    25. void free2d(void **arr)
    26. {
    27. if(arr!=NULL)
    28. free(arr);
    29. }
    30. //第二中方法,分配连续空间,C++的实现版,
    31. template <typename T>
    32. T **darray_new(int row, int col)
    33. {
    34. int size=sizeof(T);
    35. void **arr=(void **) malloc(sizeof(void *) * row + size * row * col);
    36. if (arr != NULL)
    37. {
    38. unsigned char * head;
    39. head=(unsigned char *) arr + sizeof(void *) * row;
    40. for (int i=0; i<row; ++i)
    41. {
    42. arr[i]= head + size * i * col;
    43. for (int j=0; j<col; ++j)
    44. new (head + size * (i * col + j)) T;//这一句比较有意思,想一想为什么?
    45. }
    46. }
    47. return (T**) arr;
    48. }
    49. template <typename T>
    50. void darray_free(T **arr, int row, int col)//注意要一个一个delete了,蛋疼,不过对于自定义的数据类型,很有必要
    51. {
    52. for (int i=0; i<row; ++i)
    53. for (int j=0; j<col; ++j)
    54. arr[i][j].~T();//这是什么玩意儿?!模板析构?因为使用了new?所以用析构函数的delete?
    55. if (arr != NULL)
    56. free((void **)arr);
    57. }
    58. int _tmain(int argc, _TCHAR* argv[])
    59. {
    60. //一维数组动态分配
    61. //int n;
    62. //cin>>n;
    63. ////int *p=new int[n];//一维数组动态分配方法一
    64. //int *p=(int*)malloc(n*sizeof(int));//一维数组动态分配方法二
    65. //for(int i=0;i<n;i++)
    66. //  cin>>p[i];
    67. //cout<<endl;
    68. //for(int i=0;i<n;i++)
    69. //  cout<<p[i]<<" ";
    70. //二维变长数组的动态分配,本人喜欢这种方法,虽然空间不连续,但同样可以进行p[i][j]的寻址,为什么博客中特意写上面介绍的函数来实现还没找到太好的理由
    71. //int n;
    72. //cin>>n;
    73. //int *p[2];
    74. //p[0]=new int[n];
    75. //p[1]=new int[n+1];
    76. //for(int i=0;i<n;i++)
    77. //  cin>>p[0][i];
    78. //cout<<&p[0]<<"      "<<&p[1]<<endl;//p[0],p[1]是连续的
    79. //cout<<&p[0]<<"     "<<&p[0][0]<<"     "<<&p[0][1]<<endl;//p[0]!=p[0][0],但p[0][0],p[0][1]是连续的
    80. ////C版本的,分配连续空间
    81. //int**m=(int**)malloc2d(5,5,sizeof(int));
    82. //int i,j;
    83. //for( i=0;i<5;i++)                           //void* 泛型指针,有待剖析
    84. //  for( j=0;j<5;j++)
    85. //      m[i][j]=0;
    86. //for( i=0;i<5;i++)
    87. //{
    88. //  for( j=0;j<5;j++)
    89. //      cout<<m[i][j]<<" ";
    90. //  cout<<endl;
    91. //}
    92. //free2d((void**)m);
    93. int** m=darray_new<int>(5,5);//注意模板函数怎么实现的 <int>!
    94. int i,j;
    95. for( i=0;i<5;i++)
    96. for( j=0;j<5;j++)
    97. m[i][j]=1;
    98. for( i=0;i<5;i++)
    99. {
    100. for( j=0;j<5;j++)
    101. cout<<m[i][j]<<" ";
    102. cout<<endl;
    103. }
    104. darray_free(m,5,5);
    105. return 0;
    106. }
    107. </span>

C++内存分配及变长数组的动态分配的更多相关文章

  1. PL&sol;SQL 嵌套表变长数组和索引表&lbrack;转&rsqb;

    关于PL/SQL中这三种数组的介绍,不想写了.转一篇日志吧…… 链接:http://www.blogjava.net/decode360/archive/2008/08/08/280825.html ...

  2. C语言变长数组data&lbrack;0&rsqb;总结

    C语言变长数组data[0] 1.前言 今天在看代码中遇到一个结构中包含char data[0],第一次见到时感觉很奇怪,数组的长度怎么可以为零呢?于是上网搜索一下这样的用法的目的,发现在linux内 ...

  3. GCC 中零长数组与变长数组

    前两天看程序,发现在某个函数中有下面这段程序: int n; //define a variable n int array[n]; //define an array with length n 在 ...

  4. c语言,变长数组

    下面这个结构体,可以在malloc的时候指定数据data的长度,这样的形式就是变长数组:typedef struct{ int data_len; char data[0];//或char data[ ...

  5. C语言变长数组 struct中char data&lbrack;0&rsqb;的用法

    版权声明:本文为博主原创文章,未经博主允许不得转载. 今天在看一段代码时出现了用结构体实现变长数组的写法,一开始因为忘记了这种技术,所以老觉得作者的源码有误,最后经过我深思之后,终于想起以前看过的用s ...

  6. C99新特性:变长数组&lpar;VLA&rpar;

    C99标准引入了变长数组,它允许使用变量定义数组各维.例如您可以使用下面的声明: ; ; double sales[rows][cols]; // 一个变长数组(VLA) 变长数组有一些限制,它必须是 ...

  7. PL&sol;SQL — 变长数组

    PL/SQL变长数组是PL/SQL集合数据类型中的一种,其使用方法与PL/SQL嵌套表大同小异,唯一的区别则是变长数组的元素的最大个数是有限制的.也即是说变长数组的下标固定下限等于1,上限可以扩展.下 ...

  8. oracle&colon;变长数组varray&comma;嵌套表&comma;集合

    创建变长数组类型 ) );  这个变长数组最多可以容纳两个数据,数据的类型为 varchar2(50) 更改元素类型的大小或精度 可以更改变长数组类型和嵌套表类型 元素的大小. ALTER TYPE ...

  9. C99中的变长数组(VLA)

    处理二维数组的函数有一处可能不太容易理解,数组的行可以在函数调用的时候传递,但是数组的列却只能被预置在函数内部.例如下面这样的定义: #define COLS 4 int sum3d(int ar[] ...

随机推荐

  1. &period;Net客户端监听ZooKeeper节点数据变化

    一个很简单的例子,用途是监听zookeeper中某个节点数据的变化,具体请参见代码中的注释 using System; using System.Collections.Generic; using ...

  2. js中的replace全局替换

    比如想把str中的所有“&”替换成“&” replace (\&\,"&");只是替换第一个,那么怎么全部都替换呢? replace(new Reg ...

  3. go对json的解析处理

    json常用函数 func Marshal(v interface{}) ([]byte, error) //将各种数据类型转化为json数据类型 func Unmarshal (data []byt ...

  4. Nagios ’status&period;cgi&OpenCurlyQuote;文件权限许可和访问控制漏洞

    漏洞名称: Nagios ’status.cgi‘文件权限许可和访问控制漏洞 CNNVD编号: CNNVD-201307-013 发布时间: 2014-02-21 更新时间: 2014-02-21 危 ...

  5. Linux 定时任务的配置

    通常我们会需要定时启动一些shell脚本,类似Windows中的Task Scheduler, 下面是在AWS EMR Cluster 主几点上配置的步骤: 1. 先创建一个shell脚本,将需要执行 ...

  6. Pytorch安装&lpar;基于anaconda虚拟环境&rpar;

    Pytorch安装倒腾了一上午终于搞定,记录一下安装过程. 1. 首先尝试官网的安装方式,但是网速太慢了. 除去cudnn100, torchvision和pytorch三个文件,其余可以直接从清华镜 ...

  7. python threading acquire release

    线程同步 //test.py import threading import time exitFlag = 0 class myThread (threading.Thread): def __in ...

  8. 利用nginx搭建RTMP视频点播、直播、HLS服务器&lpar;转&rpar;

    开发环境 Ubuntu 14.04 server nginx-1.8.1 nginx-rtmp-module nginx的服务器的搭建 安装nginx的依赖库 sudo apt-get update ...

  9. ARM Linux 3&period;x的设备树(Device Tree)【转】

    转自:http://blog.csdn.net/21cnbao/article/details/8457546 宋宝华 Barry Song <21cnbao@gmail.com> 1.  ...

  10. &lbrack;转&rsqb;MySQL索引方法

    此为转载文章,仅做记录使用,方便日后查看,原文链接:https://www.cnblogs.com/luyucheng/p/6289048.html MySQL索引方法   MySQL目前主要有以下几 ...