Lambda演算 - 简述Y组合子的作用

时间:2022-09-22 16:38:51

Y组合子:\f.(\x.f(xx))(\x.f(xx)),接受一个函数,返回一个高阶函数

Y组合子用于生成匿名递归函数。

什么叫匿名递归函数,考虑以下C语言递归函数

int sum(int n)
{
return n == 0 ? 0 : n + sum(n-1);
}

这个函数在内部递归调用了自身,调用自身需要函数本体的名字,这个函数叫sum,sum内部用名字sum,递归调用了自己

在lambda演算中,可以写成类似的表达式sum = \x. x == 0 ? 0 : sum x

但是对于一个lambda表达式,他本身是匿名的,lambda在定义的过程中引用了自身,就算是C++,这样的lambda表达式也是不成立的

auto sum = [](int n) {
return n == 0 ? 0 : n + sum(n-1);
};

lambda表达式本身是不具名的,我们需要绕开这个限制。

一种可能的解决办法是使用高阶函数,用另一个函数把上面的sum包装一下:它接受一个函数f,并返回一个函数,这个函数接受x,判断递归终点,或调用f继续递归:

G = \f. \x. x == 0 ? 0 : f (x-1)

写成C++是这样的

auto G = [](function<int(int)> f) {
return [&](int x) {
return x == 0 ? : 0 : x + f(x-1);
};
};

现在我们发现,当有一个函数f使得G(f) = [](int x){return x == 0 ? 0 : x + f(x-1);} = f的时候,这个f正好是我们需要的匿名递归函数sum

G(f) = f,眼熟吗,还记得不动点这个概念吗,我们需要的匿名递归函数sum就是函数G的不动点

求解这个不动点sum,我们即可获得一个匿名递归函数,如何求解见附

最后的结果:sum = YG,Y和G前面已知,这样,sum是一个签名为int(int)的函数,是一个匿名递归函数

Y组合子也称不动点组合子,用这个方法可以求解一切匿名递归函数。

附:sum = YG使得G(sum) = sum的证明:

证明:对于任意G,G(YG) = YG

令W = \x. G(xx), X = WW //这个令真的太TM绝了,反正我是没想到

有X = WW = (\x. G(xx))W = G(WW) = G(X)

又因为YG = (\x. G(xx))(\x. G(xx)) = WW = X

所以G(X) = X就是G(YG) = YG

证毕

Lambda演算 - 简述Y组合子的作用的更多相关文章

  1. Y组合子

    Y组合子 Y组合子的用处 作者:王霄池链接:https://www.zhihu.com/question/21099081/answer/18830200来源:知乎著作权归作者所有.商业转载请联系作者 ...

  2. 大到可以小说的Y组合子(二)

    问:上一回,你在最后曾提到"抽象性不足",这话怎么说? 答:试想,如果现在需要实现一个其它的递归(比如:Fibonacci),就必须把之前的模式从头套一遍,然后通过fib_make ...

  3. Racket中使用Y组合子

    关于Y组合子,网上已经介绍很多了,其作用主要是解决匿名lambda的递归调用自己. 首先我们来看直观的递归lambda定义, 假设要定义阶乘的lambda表达,C#中需要这么定义 Func<in ...

  4. 大到可以小说的Y组合子(一)

    问:上回乱扯淡了一通,这回该讲正题了吧. 答:OK. 先来列举一些我参考过,并从中受到启发的文章. (1.)老赵的一篇文章:使用Lambda表达式编写递归函数 (2.)装配脑袋的两篇文章:VS2008 ...

  5. 大到可以小说的Y组合子(三)

    答:关于Fix的问题你fix了吗? 问:慢着,让我想想,上次留下个什么问题来着?是说我们有了一个求不动点的函数Fix,但Fix却是显式递归的,是吧? 答:有劳你还记的这个问题. 问:Fix的参与背离了 ...

  6. 大到可以小说的Y组合子(零)

    问:啊!我想要一个匿名的递归… 答:Y(音同Why)… … … 问:作为一位命令式语言的使用者,为什么会突然折腾起Y组合子呢? 答:的确,这事儿要从很久以前的几次搁浅开始说起…上学的时候,从来没有接触 ...

  7. 简单易懂的程序语言入门小册子(4):基于文本替换的解释器,递归,如何构造递归函数,Y组合子

    递归.哦,递归. 递归在计算机科学中的重要性不言而喻. 递归就像女人,即令人烦恼,又无法抛弃. 先上个例子,这个例子里的函数double输入一个非负整数$n$,输出$2n$. \[ {double} ...

  8. Haskell语言学习笔记(79)lambda演算

    lambda演算 根据*,lambda演算(英语:lambda calculus,λ-calculus)是一套从数学逻辑中发展,以变量绑定和替换的规则,来研究函数如何抽象化定义.函数如何被应用以 ...

  9. &lbrack;学习&rsqb; 从 函数式编程 到 lambda演算 到 函数的本质 到 组合子逻辑

    函数式编程 阮一峰 <函数式编程初探>,阮一峰是<黑客与画家>的译者. wiki <函数编程语言> 一本好书,<计算机程序的构造与解释>有讲到schem ...

随机推荐

  1. 安装concrete时提示&OpenCurlyDoubleQuote;&period;&period;&period;database does not support InnoDB database tables&period;&period;&period;&quot&semi;如何解决

    安装很多系统时,经常有有提示: "...database does not support InnoDB database tables..." 解决办法: 找到MySQL的配置文 ...

  2. NFC&lpar;13&rpar;使用Android Beam技术传输文件

    注意 Android Beam技术传输文件时nfc只负责连接两个手机,而传输文件实际是用蓝牙模块.且目前接收文件功能只是系统完成,不用自写个接收程序. 传输文件相关的重要api 从Android4.1 ...

  3. hdu 4635 Strongly connected 强连通

    题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...

  4. 了解 &colon; angular &dollar;rootScope 在 ui-view

    在view 的element 可以直接调用 <p>{{$stateParams.xx}}</p> 要让xx有资料必须注入 app.run["$rootScope&qu ...

  5. DotNetCore跨平台~System&period;DrawingCore部署Linux需要注意的

    回到目录 你在windows上使用图像组件没有任务问题,但部署到linux之后,将注意以下几点: 安装nuget包ZKWeb.System.Drawing 项目里还是引用System.DrawingC ...

  6. &lbrack;转帖&rsqb;csdn windows 下载整理&period;

    特别说明:本帖不提供任何密钥或激活方法,请大家也不要在帖内回复或讨论涉及版权的相关内容,仅提供原版ISO下载链接 https://bbs.csdn.net/topics/391111024?list= ...

  7. Django Rest Framework源码剖析&lpar;八&rpar;-----视图与路由

    一.简介 django rest framework 给我们带来了很多组件,除了认证.权限.序列化...其中一个重要组件就是视图,一般视图是和路由配合使用,这种方式给我们提供了更灵活的使用方法,对于使 ...

  8. camera按键采集图像及waitKey的用法

    前言 项目需要通过摄像头采集图像并保存,主要是用于后续的摄像头标定.实现过程其实很简单,需要注意一些细节. 系统环境 系统版本:ubuntu16.04:opencv版本:opencv2.4.13:编程 ...

  9. CALayer及其子类

    前言:这个系列要更新Core Animation的内容,但是CALayer是Core Animation的基础. 一 CALayer是什么? 摘自官网的一句话-Layers Provide the B ...

  10. Spring &commat;SCHEDULED&lpar;CRON &equals; &quot&semi;0 0 &ast; &ast; &ast; &quest;&quot&semi;&rpar;实现定时任务

    Spring配置文件xmlns加入 xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocati ...