BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

时间:2022-09-22 13:57:46

题面

传送门

题解

劲啊……

没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没找到\(bug\)在哪儿,最后发现是我一个除法的地方忘记除数为\(0\)的情况了……甘霖娘……

公式恐惧症患者可以直接转去结论了

设直线为\(ax+by+c=0\),点为\((x,y)\),记\(d_i=a_i^2+b_i^2\),那么就是要我们最小化

\[\begin{aligned}
f(x,y)
&=\sum {(a_ix+b_iy+c_i)^2\over d_i}\\
&=\sum {a_i^2x^2+b_i^2y^2+c_i^2+2a_ib_ixy+2a_ic_ix+2b_ic_iy\over d_i}
\end{aligned}
\]

以下为了方便,记\(A^2=\sum{a_i^2\over d_i}\),\(B^2,C^2\)同理,以及\(AB=\sum{a_ib_i\over d_i}\),\(BC,AC\)同理,那么原式可以表示成

\[f(x,y)=x^2A^2+y^2B^2+C^2+2xyAB+2xAC+2yBC
\]

用拉格朗日乘数法对\(y\)求偏导数(这句话的意思大概就是,我们认为\(x\)是一个常数,那么对于每一个\(x=x_0\),\(y\)都会有一个极值点,而这个极值点就是它导数为\(0\)的点,所以我们把\(y\)看做变量求导)

\[{\partial f\over \partial y}=2yB^2+2xAB+2BC=0
\]

解得

\[y={-xAB-BC\over B^2}
\]

代入原式可以化为

\[f(x,y)=\alpha x^2+\beta x+\gamma
\]

其中

\[\alpha=A^2-{(AB)^2\over B^2}
\]

\[\beta=2AC-{2(AB)(BC)\over B^2}
\]

\[\gamma=C^2-{(BC)^2\over B^2}
\]

易知\(\alpha \geq 0\)(证明下面有)

不过这里其实还有一个尴尬的情况就是有可能\(B^2=0\),也就是说所有直线的\(b_i=0\),不过我们转过头去看会发现这种情况下\(y\)对\(f(x,y)\)完全没有影响,而且\(\alpha,\beta,\gamma\)的值分别就是\(A^2,2AC,C^2\)。所以这种情况其实并不会有影响

如果\(\alpha\neq 0\),我们要最小化\(f(x,y)\),同时还需要满足方程

\[\alpha x^2+\beta x+\gamma-f(x,y)=0
\]

有解

代入根的判别式,可知需要满足

\[\beta^2-4\alpha(\gamma-f(x,y))\geq 0
\]

\[f(x,y)\geq \gamma-{\beta^2\over 4\alpha}
\]

最小值显然了

如果\(\alpha=0\),则

\[f(x,y)=\beta x+\gamma
\]

\(Claris\)说这种情况下答案就等于\(\gamma\)……然而我实在看不出为啥……我怎么感觉可以无限小呢……然而它要是变成负数显然不符合常理啊……有哪位鸽鸽知道为什么的么可以在下面留言哦qwq

然后就做完了

ps:关于\(\alpha\geq 0\)的证明

因为有

\[\alpha=A^2-{(AB)^2\over B^2}
\]

首先显然\(B^2\geq 0\),如果\(B^2=0\),那么根据上面所说\(\alpha=A^2\geq 0\),所以假设\(B^2>0\),我们需要证明

\[A^2-{(AB)^2\over B^2}\geq 0
\]

\[A^2B^2\geq (AB)^2
\]

代入原来的值

\[\left(\sum {a_i^2\over d_i}\right)\left(\sum {b_i^2\over d_i}\right)\geq \left(\sum {a_ib_i\over d_i}\right)^2
\]

这就是柯西不等式啊……显然成立

然后没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
int read(char *s){
R int len=0;R char ch;while(((ch=getc())>'9'||ch<'0'));
for(s[++len]=ch;(ch=getc())>='0'&&ch<='9';s[++len]=ch);
return s[len+1]='\0',len;
}
double readdb()
{
R double x=0,y=0.1,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(x=ch-'0';(ch=getc())>='0'&&ch<='9';x=x*10+ch-'0');
for(ch=='.'&&(ch=getc());ch>='0'&&ch<='9';x+=(ch-'0')*y,y*=0.1,ch=getc());
return x*f;
}
inline int getop(){R char ch;while((ch=getc())>'9'||ch<'0');return ch-'0';}
const int N=2e5+5;const double eps=1e-7;
inline int sgn(R double x){return x<-eps?-1:x>eps;}
struct node{
double aa,bb,cc,ab,bc,ac;int sz;
inline void ins(R double a,R double b,R double c,R double d){
++sz,aa+=a*a*d,bb+=b*b*d,cc+=c*c*d,ab+=a*b*d,ac+=a*c*d,bc+=b*c*d;
}
inline void del(R double a,R double b,R double c,R double d){
--sz,aa-=a*a*d,bb-=b*b*d,cc-=c*c*d,ab-=a*b*d,ac-=a*c*d,bc-=b*c*d;
}
double calc(){
if(!sz)return 0;
double invb=sgn(bb)?1.0/bb:0;
double a=aa-ab*ab*invb,b=2*ac-2*ab*bc*invb,c=cc-bc*bc*invb;
return !sgn(a)?c:c-b*b*0.25/a;
}
}q;
struct Line{
double a,b,c,d;
inline Line(){}
inline Line(R double x,R double y,R double xx,R double yy){
!sgn(x-xx)?(a=1,b=0,c=-x):(a=(yy-y)/(xx-x),b=-1,c=y-a*x);
d=1.0/(a*a+b*b);
}
}L[N];
int top,op,i;double x,y,xx,yy,res;
int main(){
// freopen("testdata.in","r",stdin);
// freopen("testdata.out","w",stdout);
for(int T=read();T;--T){
op=getop();
switch(op){
case 0:{
x=readdb(),y=readdb(),xx=readdb(),yy=readdb();
L[++top]=Line(x,y,xx,yy),q.ins(L[top].a,L[top].b,L[top].c,L[top].d);
break;
}
case 1:{
i=read(),q.del(L[i].a,L[i].b,L[i].c,L[i].d);
break;
}
case 2:{
res=q.calc();
if(res<1e-3&&res>-1e-3)res=0;
printf("%.2lf\n",res);
break;
}
}
}
return 0;
}

BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)的更多相关文章

  1. CodeChef TWOROADS(计算几何&plus;拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  2. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  3. &lbrack;Math &amp&semi; Algorithm&rsqb; 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  4. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

  5. bzoj2876 &lbrack;NOI2012&rsqb;骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  6. BZOJ2876 &lbrack;Noi2012&rsqb;骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  7. 拉格朗日乘数法 和 KTT条件

    预备知识 令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\) 考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例 对于微分, 考 ...

  8. CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)

    [传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得  xa yb zc值最大的实数 x,y,z , 其中x ...

  9. Wannafly模拟赛2 B river(拉格朗日乘数法)

    题目 https://www.nowcoder.com/acm/contest/4/B题意 有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的 ...

随机推荐

  1. Android ANR 分析解决方法

    一:什么是ANR ANR:Application Not Responding,即应用无响应 二:ANR的类型 ANR一般有三种类型: 1. KeyDispatchTimeout(5 seconds) ...

  2. nginx文件管理

    管理文件下载nginx 可以自己实现,无需写代码即可: 修改配置文件: location /doc { autoindex on; autoindex_exact_size on; autoindex ...

  3. 必须知道的八大种排序算法【java实现】(二) 选择排序,插入排序,希尔算法【详解】

    一.选择排序 1.基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换:然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止. 2.实例 3.算法 ...

  4. pstack使用和原理

    前言: 最近小组在组织<<深入剖析Nginx>>的读书会, 里面作者提到了pstack这个工具. 之前写JAVA程序, 对jstack这个工具, 非常的喜欢, 觉得很有用. 于 ...

  5. 快速排序法QuickSort

    /** * * @author Administrator * 功能:交换式排序之快速排序 */ package com.test1; import java.util.Calendar; publi ...

  6. 【Netty】Netty传输

    一.前言 在简单学习了Netty中的组件后,接着学习Netty中数据的传输细节. 二.传输 2.1 传输示例 Netty中的数据传输都是使用的字节类型,下面通过一个实例进行说明,该实例中服务器接受请求 ...

  7. 信号滤波模块verilog代码---UNLOCK,LOCK状态机方式

    信号滤波模块verilog代码 `timescale 1ns / 1ps /////////////////////////////////////////////////////////////// ...

  8. AngularJs 1&period;x和AngularJs2的区别

    AngularJS  2 尽管还在Alpha阶段,但主要功能和文档已经发布.让我我们了解下Angular 1 和 2 的区别,以及新的设计目标将如何实现. 1.从移动app开发上面分析: Angula ...

  9. 雷林鹏分享:Ruby 命令行选项

    Ruby 命令行选项 Ruby 一般是从命令行运行,方式如下: $ ruby [ options ] [.] [ programfile ] [ arguments ... ] 解释器可以通过下列选项 ...

  10. AD9如何设置原点位置

    Edit --> Origin --> Set