本文为大家分享了多种方法求质数python实现代码,供大家参考,具体内容如下
题目要求是求所有小于n的质数的个数。
求质数方法1:
穷举法:
根据定义循环判断该数除以比他小的每个自然数(大于1),如果有能被他整除的就不是质数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
def countPrimes1( self , n):
"""
:type n: int
:rtype: int
"""
if n< = 2 :
return 0
else :
res = []
for i in range ( 2 ,n):
flag = 0 # 质数标志,=0表示质数
for j in range ( 2 ,i):
if i % j = = 0 :
flag = 1
if flag = = 0 :
res.append(i)
return len (res)
|
求质数方法2:
利用定理:如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。所以判断一个数是否是质数,只需判断它是否能被小于它开根后的所有数整除。这样做的运算会少很多。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def countPrimes2( self , n):
if n< = 2 :
return 0
else :
res = []
for i in range ( 2 , n):
flag = 0
for j in range ( 2 , int (math.sqrt(i)) + 1 ):
if i % j = = 0 :
flag = 1
if flag = = 0 :
res.append(i)
return len (res)
|
求质数方法3:
利用定理:如果一个数是合数,那么它的最小质因数肯定小于等于它的平方根。我们可以发现只要尝试小于等于平方根的所有数即可。列举从 3 到根号x的所有数,还是有些浪费。比如要判断101是否质数,101的根号取整后是10,需要尝试的数是1到10。但是可以发现,对9的尝试是多余的。不能被3整除,必然不能被9整除……顺着这个思路走下去,其实,只要尝试小于根号x的质数即可。而这些质数,恰好前面已经算出来了,已经存在res中了。
1
2
3
4
5
6
7
8
9
10
11
12
13
|
def countPrimes3( self , n):
if n < = 2 :
return 0
else :
res = []
for i in range ( 2 , n):
flag = 0
for j in res:
if i % j = = 0 :
flag = 1
if flag = = 0 :
res.append(i)
return len (res)
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/zhangwei15hh/article/details/78471593