在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算
关于softmax_cross_entropy求导的过程,可以参考HERE
示例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
# -*- coding: utf-8 -*-
import torch
import torch.autograd as autograd
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
# 对data求梯度, 用于反向传播
data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ]]), requires_grad = True )
# 多分类标签 one-hot格式
label = Variable(torch.zeros(( 3 , 3 )))
label[ 0 , 2 ] = 1
label[ 1 , 1 ] = 1
label[ 2 , 0 ] = 1
print (label)
# for batch loss = mean( -sum(Pj*logSj) )
# for one : loss = -sum(Pj*logSj)
loss = torch.mean( - torch. sum (label * torch.log(F.softmax(data, dim = 1 )), dim = 1 ))
loss.backward()
print (loss, data.grad)
|
输出:
1
2
3
4
5
6
7
|
tensor([[ 0. , 0. , 1. ],
[ 0. , 1. , 0. ],
[ 1. , 0. , 0. ]])
# loss:损失 和 input's grad:输入的梯度
tensor( 1.4076 ) tensor([[ 0.0300 , 0.0816 , - 0.1116 ],
[ 0.0300 , - 0.2518 , 0.2217 ],
[ - 0.3033 , 0.0816 , 0.2217 ]])
|
注意:
对于单输入的loss 和 grad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ]]), requires_grad = True )
label = Variable(torch.zeros(( 1 , 3 )))
#分别令不同索引位置label为1
label[ 0 , 0 ] = 1
# label[0, 1] = 1
# label[0, 2] = 1
print (label)
# for batch loss = mean( -sum(Pj*logSj) )
# for one : loss = -sum(Pj*logSj)
loss = torch.mean( - torch. sum (label * torch.log(F.softmax(data, dim = 1 )), dim = 1 ))
loss.backward()
print (loss, data.grad)
|
其输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
# 第一组:
lable: tensor([[ 1. , 0. , 0. ]])
loss: tensor( 2.4076 )
grad: tensor([[ - 0.9100 , 0.2447 , 0.6652 ]])
# 第二组:
lable: tensor([[ 0. , 1. , 0. ]])
loss: tensor( 1.4076 )
grad: tensor([[ 0.0900 , - 0.7553 , 0.6652 ]])
# 第三组:
lable: tensor([[ 0. , 0. , 1. ]])
loss: tensor( 0.4076 )
grad: tensor([[ 0.0900 , 0.2447 , - 0.3348 ]])
"""
解释:
对于输入数据 tensor([[ 1., 2., 3.]]) softmax之后的结果如下
tensor([[ 0.0900, 0.2447, 0.6652]])
交叉熵求解梯度推导公式可知 s[0, 0]-1, s[0, 1]-1, s[0, 2]-1 是上面三组label对应的输入数据梯度
"""
|
pytorch提供的softmax, 和log_softmax 关系
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# 官方提供的softmax实现
In[ 2 ]: import torch
...: import torch.autograd as autograd
...: from torch.autograd import Variable
...: import torch.nn.functional as F
...: import torch.nn as nn
...: import numpy as np
In[ 3 ]: data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ]]), requires_grad = True )
In[ 4 ]: data
Out[ 4 ]: tensor([[ 1. , 2. , 3. ]])
In[ 5 ]: e = torch.exp(data)
In[ 6 ]: e
Out[ 6 ]: tensor([[ 2.7183 , 7.3891 , 20.0855 ]])
In[ 7 ]: s = torch. sum (e, dim = 1 )
In[ 8 ]: s
Out[ 8 ]: tensor([ 30.1929 ])
In[ 9 ]: softmax = e / s
In[ 10 ]: softmax
Out[ 10 ]: tensor([[ 0.0900 , 0.2447 , 0.6652 ]])
In[ 11 ]: # 等同于 pytorch 提供的 softmax
In[ 12 ]: org_softmax = F.softmax(data, dim = 1 )
In[ 13 ]: org_softmax
Out[ 13 ]: tensor([[ 0.0900 , 0.2447 , 0.6652 ]])
In[ 14 ]: org_softmax = = softmax # 计算结果相同
Out[ 14 ]: tensor([[ 1 , 1 , 1 ]], dtype = torch.uint8)
# 与log_softmax关系
# log_softmax = log(softmax)
In[ 15 ]: _log_softmax = torch.log(org_softmax)
In[ 16 ]: _log_softmax
Out[ 16 ]: tensor([[ - 2.4076 , - 1.4076 , - 0.4076 ]])
In[ 17 ]: log_softmax = F.log_softmax(data, dim = 1 )
In[ 18 ]: log_softmax
Out[ 18 ]: tensor([[ - 2.4076 , - 1.4076 , - 0.4076 ]])
|
官方提供的softmax交叉熵求解结果
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
# -*- coding: utf-8 -*-
import torch
import torch.autograd as autograd
from torch.autograd import Variable
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
data = Variable(torch.FloatTensor([[ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ], [ 1.0 , 2.0 , 3.0 ]]), requires_grad = True )
log_softmax = F.log_softmax(data, dim = 1 )
label = Variable(torch.zeros(( 3 , 3 )))
label[ 0 , 2 ] = 1
label[ 1 , 1 ] = 1
label[ 2 , 0 ] = 1
print ( "lable: " , label)
# 交叉熵的计算方式之一
loss_fn = torch.nn.NLLLoss() # reduce=True loss.sum/batch & grad/batch
# NLLLoss输入是log_softmax, target是非one-hot格式的label
loss = loss_fn(log_softmax, torch.argmax(label, dim = 1 ))
loss.backward()
print ( "loss: " , loss, "\ngrad: " , data.grad)
"""
# 交叉熵计算方式二
loss_fn = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted
#CrossEntropyLoss适用于分类问题的损失函数
#input:没有softmax过的nn.output, target是非one-hot格式label
loss = loss_fn(data, torch.argmax(label, dim=1))
loss.backward()
print("loss: ", loss, "\ngrad: ", data.grad)
"""
"""
|
输出
1
2
3
4
5
6
7
|
lable: tensor([[ 0. , 0. , 1. ],
[ 0. , 1. , 0. ],
[ 1. , 0. , 0. ]])
loss: tensor( 1.4076 )
grad: tensor([[ 0.0300 , 0.0816 , - 0.1116 ],
[ 0.0300 , - 0.2518 , 0.2217 ],
[ - 0.3033 , 0.0816 , 0.2217 ]])
|
通过和示例的输出对比, 发现两者是一样的
以上这篇PyTorch的SoftMax交叉熵损失和梯度用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/u010472607/article/details/82705567