这是最近碰到一个问题,先描述下问题:
首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化器,默认情况下对所有tf.trainable_variables()进行权值更新,问题就出在这,明明将vgg16的模型设置为trainable=False,但是tf的优化器仍然对vgg16做权值更新
以上就是问题描述,经过谷歌百度等等,终于找到了解决办法,下面我们一点一点的来复原整个问题。
trainable=False 无效
首先,我们导入训练好的模型vgg16,对其设置成trainable=False
1
2
3
|
from keras.applications import VGG16
import tensorflow as tf
from keras import layers
|
1
2
3
4
|
# 导入模型
base_mode = VGG16(include_top = False )
# 查看可训练的变量
tf.trainable_variables()
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
[<tf.Variable 'block1_conv1/kernel:0' shape = ( 3 , 3 , 3 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv1/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block1_conv2/kernel:0' shape = ( 3 , 3 , 64 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv2/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv1/kernel:0' shape = ( 3 , 3 , 64 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv1/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv2/kernel:0' shape = ( 3 , 3 , 128 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv2/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv1/kernel:0' shape = ( 3 , 3 , 128 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv2/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv2/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv3/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv3/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv1/kernel:0' shape = ( 3 , 3 , 256 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv2/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv2/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv3/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv3/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv2/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv2/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv3/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv3/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block1_conv1_1/kernel:0' shape = ( 3 , 3 , 3 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv1_1/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block1_conv2_1/kernel:0' shape = ( 3 , 3 , 64 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv2_1/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv1_1/kernel:0' shape = ( 3 , 3 , 64 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv1_1/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv2_1/kernel:0' shape = ( 3 , 3 , 128 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv2_1/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv1_1/kernel:0' shape = ( 3 , 3 , 128 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv1_1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv2_1/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv2_1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv3_1/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv3_1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv1_1/kernel:0' shape = ( 3 , 3 , 256 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv1_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv2_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv2_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv3_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv3_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv1_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv1_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv2_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv2_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv3_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv3_1/bias:0' shape = ( 512 ,) dtype = float32_ref>]
|
1
2
3
4
|
# 设置 trainable=False
# base_mode.trainable = False似乎也是可以的
for layer in base_mode.layers:
layer.trainable = False
|
设置好trainable=False后,再次查看可训练的变量,发现并没有变化,也就是说设置无效
# 再次查看可训练的变量
tf.trainable_variables()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
[<tf.Variable 'block1_conv1/kernel:0' shape = ( 3 , 3 , 3 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv1/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block1_conv2/kernel:0' shape = ( 3 , 3 , 64 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv2/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv1/kernel:0' shape = ( 3 , 3 , 64 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv1/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv2/kernel:0' shape = ( 3 , 3 , 128 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv2/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv1/kernel:0' shape = ( 3 , 3 , 128 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv2/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv2/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv3/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv3/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv1/kernel:0' shape = ( 3 , 3 , 256 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv2/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv2/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv3/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv3/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv2/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv2/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv3/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv3/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block1_conv1_1/kernel:0' shape = ( 3 , 3 , 3 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv1_1/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block1_conv2_1/kernel:0' shape = ( 3 , 3 , 64 , 64 ) dtype = float32_ref>,
<tf.Variable 'block1_conv2_1/bias:0' shape = ( 64 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv1_1/kernel:0' shape = ( 3 , 3 , 64 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv1_1/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block2_conv2_1/kernel:0' shape = ( 3 , 3 , 128 , 128 ) dtype = float32_ref>,
<tf.Variable 'block2_conv2_1/bias:0' shape = ( 128 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv1_1/kernel:0' shape = ( 3 , 3 , 128 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv1_1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv2_1/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv2_1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block3_conv3_1/kernel:0' shape = ( 3 , 3 , 256 , 256 ) dtype = float32_ref>,
<tf.Variable 'block3_conv3_1/bias:0' shape = ( 256 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv1_1/kernel:0' shape = ( 3 , 3 , 256 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv1_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv2_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv2_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block4_conv3_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block4_conv3_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv1_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv1_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv2_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv2_1/bias:0' shape = ( 512 ,) dtype = float32_ref>,
<tf.Variable 'block5_conv3_1/kernel:0' shape = ( 3 , 3 , 512 , 512 ) dtype = float32_ref>,
<tf.Variable 'block5_conv3_1/bias:0' shape = ( 512 ,) dtype = float32_ref>]
|
解决的办法
解决的办法就是在导入模型的时候建立一个variable_scope,将需要训练的变量放在另一个variable_scope,然后通过tf.get_collection获取需要训练的变量,最后通过tf的优化器中var_list指定需要训练的变量
1
2
3
4
5
6
7
8
|
from keras import models
with tf.variable_scope( 'base_model' ):
base_model = VGG16(include_top = False , input_shape = ( 224 , 224 , 3 ))
with tf.variable_scope( 'xxx' ):
model = models.Sequential()
model.add(base_model)
model.add(layers.Flatten())
model.add(layers.Dense( 10 ))
|
1
2
3
|
# 获取需要训练的变量
trainable_var = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'xxx' )
trainable_var
|
[<tf.Variable 'xxx_2/dense_1/kernel:0' shape=(25088, 10) dtype=float32_ref>,
<tf.Variable 'xxx_2/dense_1/bias:0' shape=(10,) dtype=float32_ref>]
1
2
3
|
# 定义tf优化器进行训练,这里假设有一个loss
loss = model.output / 2 ; # 随便定义的,方便演示
train_step = tf.train.AdamOptimizer().minimize(loss, var_list = trainable_var)
|
总结
在keras与TensorFlow混编中,keras中设置trainable=False对于TensorFlow而言并不起作用
解决的办法就是通过variable_scope对变量进行区分,在通过tf.get_collection来获取需要训练的变量,最后通过tf优化器中var_list指定训练
以上这篇解决Keras TensorFlow 混编中 trainable=False设置无效问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/weiwei9363/article/details/79673201