特征向量-Eigenvalues_and_eigenvectors#Graphs

时间:2022-09-21 14:03:48

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#Graphs

A               {\displaystyle A}   特征向量-Eigenvalues_and_eigenvectors#Graphs,它的特征向量(eigenvector,也译固有向量本征向量)                     v               {\displaystyle v}   特征向量-Eigenvalues_and_eigenvectors#Graphs 经过这个线性变换[1]之后,得到的新向量仍然与原来的                     v               {\displaystyle v}   特征向量-Eigenvalues_and_eigenvectors#Graphs 保持在同一条直线上,但其长度或方向也许会改变。即

A               {\displaystyle A}   特征向量-Eigenvalues_and_eigenvectors#Graphs,它的特征向量(eigenvector,也译固有向量本征向量)                     v               {\displaystyle v}   特征向量-Eigenvalues_and_eigenvectors#Graphs 经过这个线性变换[1]之后,得到的新向量仍然与原来的                     v               {\displaystyle v}   特征向量-Eigenvalues_and_eigenvectors#Graphs 保持在同一条直线上,但其长度或方向也许会改变。即

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a non-zero vector that does not change its direction when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space V over a field F into itself and v is a vector in V that is not the zero vector, then v is an eigenvector of T if T(v) is a scalar multiple of v. This condition can be written as the equation

                    T         (                   v                 )         =         λ                   v                 ,               {\displaystyle T(\mathbf {v} )=\lambda \mathbf {v} ,}   特征向量-Eigenvalues_and_eigenvectors#Graphs

where λ is a scalar in the field F, known as the eigenvalue, characteristic value, or characteristic root associated with the eigenvector v.

If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A, and the vector v by a column vector, rendering the above mapping as a matrix multiplication on the left hand side and a scaling of the column vector on the right hand side in the equation

                    A                   v                 =         λ                   v                 .               {\displaystyle A\mathbf {v} =\lambda \mathbf {v} .}   特征向量-Eigenvalues_and_eigenvectors#Graphs

There is a correspondence between n by n square matrices and linear transformations from an n-dimensional vector space to itself. For this reason, it is equivalent to define eigenvalues and eigenvectors using either the language of matrices or the language of linear transformations.[1][2]

Geometrically an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction that is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed.[3]

                    A         v         =         λ         v               {\displaystyle Av=\lambda v}   特征向量-Eigenvalues_and_eigenvectors#Graphs

λ               {\displaystyle \lambda }   特征向量-Eigenvalues_and_eigenvectors#Graphs标量,即特征向量的长度在该线性变换下缩放的比例,称                     λ               {\displaystyle \lambda }   特征向量-Eigenvalues_and_eigenvectors#Graphs 为其特征值(本征值)。如果特征值为正,则表示                     v               {\displaystyle v}   特征向量-Eigenvalues_and_eigenvectors#Graphs 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

                    A         v         =         λ         v               {\displaystyle Av=\lambda v}   特征向量-Eigenvalues_and_eigenvectors#Graphs

λ               {\displaystyle \lambda }   特征向量-Eigenvalues_and_eigenvectors#Graphs标量,即特征向量的长度在该线性变换下缩放的比例,称                     λ               {\displaystyle \lambda }   特征向量-Eigenvalues_and_eigenvectors#Graphs 为其特征值(本征值)。如果特征值为正,则表示                     v               {\displaystyle v}   特征向量-Eigenvalues_and_eigenvectors#Graphs 在经过线性变换的作用后方向也不变;如果特征值为负,说明方向会反转;如果特征值为0,则是表示缩回零点。但无论怎样,仍在同一条直线上。

特征向量-Eigenvalues_and_eigenvectors#Graphs的更多相关文章

  1. 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换

    总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...

  2. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

    Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks o ...

  3. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  4. 论文解读《The Emerging Field of Signal Processing on Graphs》

    感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...

  5. PCA 协方差矩阵特征向量的计算

    人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或 ...

  6. c语言计算矩阵特征值和特征向量-1(幂法)

    #include <stdio.h> #include <math.h> #include <stdlib.h> #define M 3 //方阵的行数 列数 #d ...

  7. tunning-Instruments and Flame Graphs

    On mac os, programs may need Instruments to tuning, and when you face too many probe messages, you'l ...

  8. PCA算法是怎么跟协方差矩阵&sol;特征值&sol;特征向量勾搭起来的&quest;

    PCA, Principle Component Analysis, 主成份分析, 是使用最广泛的降维算法. ...... (关于PCA的算法步骤和应用场景随便一搜就能找到了, 所以这里就不说了. ) ...

  9. Intel&&num;174&semi; Threading Building Blocks &lpar;Intel&&num;174&semi; TBB&rpar; Developer Guide 中文 Parallelizing Data Flow and Dependence Graphs并行化data flow和依赖图

    https://www.threadingbuildingblocks.org/docs/help/index.htm Parallelizing Data Flow and Dependency G ...

随机推荐

  1. android BitMap回收

    第一种方法--及时回收bitmap内存: 一般而言,回收bitmap内存可以用到以下代码 if(bitmap != null && !bitmap.isRecycled()){ bit ...

  2. css文件加载:&commat;import和link的区别

    刚看了一个百度试题:请简述CSS加载方式link和@import的区别? 平时一般都用link,也知道css的加载方式,但还真的没有仔细研究过其之间的差别,查了一些资料,大致总结如下: @impot使 ...

  3. api1

    http://www.android-doc.com/reference/android/app/Fragment.html

  4. 理解云计算的(IaaS PaaS SaaS)

    本文不经允许,不得转载! 云计算技术已经慢慢普及了.我们做技术的有必要学习云计算技术. IaaS:Infrastructure-as-a-Service(基础设施即服务)云计算到来之前,很多企业都是自 ...

  5. node&period;js基础

    //安装淘宝npm镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org//require表示引包,引包就是引用自己的一个特 ...

  6. busybox&lpar;二&rpar;编译

    title: busybox(二)编译 tag: arm date: 2018-11-13 23:14:58 --- busybox(二)编译 解压,源码包在busybox-1.7.0.tar.bz2 ...

  7. MySQL查询缓存总结

    可以通过下面的SQL查看当前查询缓存相关参数状态: show variables like '%query_cache%'; 1)  query_cache_type 查询缓存类型: 0 表示始终不适 ...

  8. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields(理解)

    0 - 人体姿态识别存在的挑战 图像中的个体数量.尺寸大小.位置均未知 个体间接触.遮挡等影响检测 实时性要求较高,传统的自顶向下方法运行时间随着个体数越多而越长 1 - 整体思路 整个模型架构是自底 ...

  9. java读取数据,2&comma;2&comma;1方式读取

    /*   * for(int i=0;i<15;)   * { for(int j=0;j<5;j++,i++)   *    {    *      if(j%2==0&&amp ...

  10. sitecore系统教程之默认收集数据库MongoDB注意事项

    MongoDB是一个高度可扩展的基于文档的NoSQL数据库解决方案,Sitecore体验数据库(xDB)用于收集数据库.在安装MongoDB之前,您应该考虑以下事项: 确定您是需要基于公共云的解决方案 ...