1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 12 09:37:38 2018
利用百度api实现图片文本识别
@author: XnCSD
"""
import glob
from os import path
import os
from aip import AipOcr
from PIL import Image
from queue import Queue
import threading
import datetime
def convertimg(picfile, outdir):
'''调整图片大小,对于过大的图片进行压缩
picfile: 图片路径
outdir: 图片输出路径
'''
img = Image. open (picfile)
width, height = img.size
while (width * height > 4000000 ): # 该数值压缩后的图片大约 两百多k
width = width / / 2
height = height / / 2
new_img = img.resize((width, height), Image.BILINEAR)
new_img.save(path.join(outdir, os.path.basename(picfile)))
def baiduOCR(ts_queue):
"""利用百度api识别文本,并保存提取的文字
picfile: 图片文件名
outfile: 输出文件
"""
while not ts_queue.empty():
picfile = ts_queue.get()
filename = path.basename(picfile)
outfile = 'D:\Study\pythonProject\scrapy\IpProxy\port_zidian.txt'
APP_ID = '' # 刚才获取的 ID,下同
API_KEY = ''
SECRECT_KEY = ''
client = AipOcr(APP_ID, API_KEY, SECRECT_KEY)
i = open (picfile, 'rb' )
img = i.read()
print ( "正在识别图片:\t" + filename)
message = client.basicGeneral(img) # 通用文字识别,每天 50 000 次免费
# message = client.basicAccurate(img) # 通用文字高精度识别,每天 800 次免费
#print("识别成功!")
i.close()
try :
filename1 = filename.split( '.' )[ 0 ]
filename1 = ''.join(filename1)
with open (outfile, 'a+' ) as fo:
for text in message.get( 'words_result' ):
fo.writelines( '\'' + filename1 + '\'' + ':' + text.get( 'words' ) + ',' )
fo.writelines( '\n' )
# fo.writelines("+" * 60 + '\n')
# fo.writelines("识别图片:\t" + filename + "\n" * 2)
# fo.writelines("文本内容:\n")
# # 输出文本内容
# for text in message.get('words_result'):
# fo.writelines(text.get('words') + '\n')
# fo.writelines('\n' * 2)
os.remove(filename)
print ( "识别成功!" )
except :
print ( '识别失败' )
print ( "文本导出成功!" )
print ()
def duqu_tupian( dir ):
ts_queue = Queue( 10000 )
outdir = dir
# if path.exists(outfile):
# os.remove(outfile)
if not path.exists(outdir):
os.mkdir(outdir)
print ( "压缩过大的图片..." )
# 首先对过大的图片进行压缩,以提高识别速度,将压缩的图片保存与临时文件夹中
try :
for picfile in glob.glob(r "D:\Study\pythonProject\scrapy\IpProxy\端口\*" ):
convertimg(picfile, outdir)
print ( "图片识别..." )
for picfile in glob.glob( "tmp/*" ):
ts_queue.put(picfile)
#baiduOCR(picfile, outfile)
#os.remove(picfile)
print ( '图片文本提取结束!文本输出结果位于文件中。' )
#os.removedirs(outdir)
return ts_queue
except :
print ( '失败' )
if __name__ = = "__main__" :
start = datetime.datetime.now().replace(microsecond = 0 )
t = 'tmp'
s = duqu_tupian(t)
threads = []
for i in range ( 100 ):
t = threading.Thread(target = baiduOCR, name = 'th-' + str (i), kwargs = { 'ts_queue' : s})
threads.append(t)
for t in threads:
t.start()
for t in threads:
t.join()
end = datetime.datetime.now().replace(microsecond = 0 )
print ( '删除耗时:' + str (end - start))
|
速度快,准确率99百分,100里必回出错一张。
实测,识别1500张图片,还是小图片验证码大小,高清,用时30秒,不能识别150张,出错14张左右。 但总体快,不会出现乱码啥的。
以上就是python 利用百度API识别图片文字(多线程版)的详细内容,更多关于python 识别图片文字的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/aotumandaren/p/14128757.html