https://vjudge.net/problem/UVA-11806
题意:
在一个m行n列的矩形网格里放k个相同的石子,有多少种方法?每个格子最多放一个石子,所有石子都要用完,并且第一行、最后一行、第一列、最后一列都得有石子。
思路:
如果考虑各种情况的话很复杂,设满足第一行没有石子的方案集为A,最后一行没有石子的方案集为B,第一列没有石子的方案集为C,最后一列没有石子的方案集为D,全集为S。
一个容斥原理的公式就可以解答出来,用二进制来枚举方案集的组合。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
using namespace std; const int mod = ;
const int maxn = +; int c[maxn][maxn]; void init()
{
for (int i = ; i <= maxn; i++)
{
c[i][] = c[i][i] = ;
for (int j = ; j < i; j++) c[i][j] = (c[i - ][j] + c[i - ][j - ]) % mod;
}
} int main()
{
//freopen("D:\\input.txt", "r", stdin);
int T;
int kase = ;
int n, m, k;
scanf("%d", &T);
init();
while (T--)
{
scanf("%d%d%d", &n, &m, &k);
int sum = ;
for (int S = ; S<; S++)
{
//S=0时就相当于计算c[n*m][k],不考虑条件时的所有方法数
int b = , row = n, col = m;
if (S & ) { row--; b++; }
if (S & ) { row--; b++; }
if (S & ) { col--; b++; }
if (S & ) { col--; b++; }
if (b & ) sum = (sum + mod - c[row*col][k]) % mod;
else sum = (sum + c[row*col][k]) % mod;
}
printf("Case %d: %d\n", ++kase, sum);
}
return ;
}