1、目录结构
2、入口类
# coding = utf-8
"""
注意:RNN使用的数据为序列化的数据
RNN网络:主要由多个LSTM计算单元组成,依靠BPTT算法进行时序展开
LSTM:含有保留门和忘记门,是一个多输入多输出的网络结构。
LSTM具备抑制梯度特性
"""
# import numpy as np
# import tensorflow as tf
# from .models.model import rnn_model
# from .dataset.poems import process_poems,generate_batch
import argparse
import sys
sys.path.append(r'D:\study\python-数据分析\深度学习\RNN网络\inference') def parse_args():
"""
参数设定
:return:
"""
#参数描述
parser = argparse.ArgumentParser(description='Intelligence Poem and Lyric Writer.') help_ = 'you can set this value in terminal --write value can be poem or lyric.'
parser.add_argument('-w', '--write', default='poem', choices=['poem', 'lyric'], help=help_) help_ = 'choose to train or generate.'
#训练
parser.add_argument('--train', dest='train', action='store_true', help=help_)
#测试
parser.add_argument('--no-train', dest='train', action='store_false', help=help_)
parser.set_defaults(train=False) args_ = parser.parse_args()
return args_ if __name__ == '__main__':
args = parse_args()
if args.write == 'poem':
from inference import tang_poems
if args.train:
tang_poems.main(True) #训练
else:
tang_poems.main(False) #测试
elif args.write == 'lyric':
from inference import song_lyrics
print(args.train)
if args.train:
song_lyrics.main(True)
else:
song_lyrics.main(False)
else:
print('[INFO] write option can only be poem or lyric right now.')
3、tang_poems.py
# -*- coding: utf-8 -*-
# file: tang_poems.py
import collections
import os
import sys
import numpy as np
import tensorflow as tf
from models.model import rnn_model
from dataset.poems import process_poems, generate_batch
import heapq tf.app.flags.DEFINE_integer('batch_size', 64, 'batch size.')
tf.app.flags.DEFINE_float('learning_rate', 0.01, 'learning rate.') # set this to 'main.py' relative path
tf.app.flags.DEFINE_string('checkpoints_dir', os.path.abspath('./checkpoints/poems/'), 'checkpoints save path.')
tf.app.flags.DEFINE_string('file_path', os.path.abspath('./dataset/data/poems.txt'), 'file name of poems.') tf.app.flags.DEFINE_string('model_prefix', 'poems', 'model save prefix.') tf.app.flags.DEFINE_integer('epochs', 50, 'train how many epochs.') FLAGS = tf.app.flags.FLAGS start_token = 'G'
end_token = 'E' def run_training():
#模型保存路径配置
if not os.path.exists(os.path.dirname(FLAGS.checkpoints_dir)):
os.mkdir(os.path.dirname(FLAGS.checkpoints_dir))
if not os.path.exists(FLAGS.checkpoints_dir):
os.mkdir(FLAGS.checkpoints_dir)
#1、诗集数据处理
poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path)
#2、生成批量数据用于训练
batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size, poems_vector, word_to_int) input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None])
output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None])
#3、建立模型
end_points = rnn_model(model='lstm', input_data=input_data, output_data=output_targets, vocab_size=len(
vocabularies), rnn_size=128, num_layers=2, batch_size=64, learning_rate=FLAGS.learning_rate) saver = tf.train.Saver(tf.global_variables())
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
#4、开始训练
with tf.Session() as sess:
# sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess)
# sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
sess.run(init_op) start_epoch = 0
checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoints_dir)
if checkpoint:
saver.restore(sess, checkpoint)
print("[INFO] restore from the checkpoint {0}".format(checkpoint))
start_epoch += int(checkpoint.split('-')[-1])
print('[INFO] start training...')
try:
for epoch in range(start_epoch, FLAGS.epochs):
n = 0
n_chunk = len(poems_vector) // FLAGS.batch_size
for batch in range(n_chunk):
loss, _, _ = sess.run([
end_points['total_loss'],
end_points['last_state'],
end_points['train_op']
], feed_dict={input_data: batches_inputs[n], output_targets: batches_outputs[n]})
n += 1
print('[INFO] Epoch: %d , batch: %d , training loss: %.6f' % (epoch, batch, loss)) if epoch % 6 == 0:
saver.save(sess, './model/', global_step=epoch)
#saver.save(sess, os.path.join(FLAGS.checkpoints_dir, FLAGS.model_prefix), global_step=epoch)
except KeyboardInterrupt:
print('[INFO] Interrupt manually, try saving checkpoint for now...')
saver.save(sess, os.path.join(FLAGS.checkpoints_dir, FLAGS.model_prefix), global_step=epoch)
print('[INFO] Last epoch were saved, next time will start from epoch {}.'.format(epoch)) def to_word(predict, vocabs):
t = np.cumsum(predict)
s = np.sum(predict)
sample = int(np.searchsorted(t, np.random.rand(1) * s))
if sample > len(vocabs):
sample = len(vocabs) - 1
return vocabs[sample] def gen_poem(begin_word):
batch_size = 1
print('[INFO] loading corpus from %s' % FLAGS.file_path)
poems_vector, word_int_map, vocabularies = process_poems(FLAGS.file_path) input_data = tf.placeholder(tf.int32, [batch_size, None]) end_points = rnn_model(model='lstm', input_data=input_data, output_data=None, vocab_size=len(
vocabularies), rnn_size=128, num_layers=2, batch_size=64, learning_rate=FLAGS.learning_rate) saver = tf.train.Saver(tf.global_variables())
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
with tf.Session() as sess:
sess.run(init_op) #checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoints_dir)
checkpoint = tf.train.latest_checkpoint('./model/')
#saver.restore(sess, checkpoint)
saver.restore(sess, './model/-24') x = np.array([list(map(word_int_map.get, start_token))]) [predict, last_state] = sess.run([end_points['prediction'], end_points['last_state']],
feed_dict={input_data: x})
if begin_word:
word = begin_word
else:
word = to_word(predict, vocabularies)
poem = ''
while word != end_token:
print ('runing')
poem += word
x = np.zeros((1, 1))
x[0, 0] = word_int_map[word]
[predict, last_state] = sess.run([end_points['prediction'], end_points['last_state']],
feed_dict={input_data: x, end_points['initial_state']: last_state})
word = to_word(predict, vocabularies)
# word = words[np.argmax(probs_)]
return poem def pretty_print_poem(poem):
poem_sentences = poem.split('。')
for s in poem_sentences:
if s != '' and len(s) > 10:
print(s + '。') def main(is_train):
if is_train:
print('[INFO] train tang poem...')
run_training()
else:
print('[INFO] write tang poem...') begin_word = input('输入起始字:')
#begin_word = '我'
poem2 = gen_poem(begin_word)
pretty_print_poem(poem2) if __name__ == '__main__':
tf.app.run()
4、inference中poems.py
import numpy as np
import tensorflow as tf
from models.model import rnn_model
from dataset.poems import process_poems,generate_batch tf.app.flags.DEFINE_integer('batch_size',64,'batch size = ?')
tf.app.flags.DEFINE_float('learning_rate',0.01,'learning_rate')
tf.app.flags.DEFINE_string('check_pointss_dir','./model/','check_pointss_dir')
tf.app.flags.DEFINE_string('file_path','./data/.txt','file_path')
tf.app.flags.DEFINE_integer('epoch',50,'train epoch') start_token = 'G'
end_token = 'E'
FLAGS = tf.app.flags.FLAGS
def run_training():
poems_vector,word_to_int,vocabularies = process_poems(FLAGS.file_path)
batch_inputs,batch_outputs = generate_batch(FLAGS.batch_size,poems_vector,word_to_int) input_data = tf.placeholder(tf.int32, [FLAGS.batch_size,None])
output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size,None]) end_points = rnn_model(model='lstm',input=input_data,output_data = output_targets,vocab_size = len(vocabularies)
,run_size = 128,num_layers = 2,batch_size = 64,learning_rate = 0.01) def main(is_train):
if is_train:
print ('training')
run_training()
else:
print ('test')
begin_word = input('word') if __name__ == '__main__':
tf.app.run()
5、model.py
# -*- coding: utf-8 -*-
# file: model.py import tensorflow as tf
import numpy as np def rnn_model(model, input_data, output_data, vocab_size, rnn_size=128, num_layers=2, batch_size=64,
learning_rate=0.01):
"""
construct rnn seq2seq model.
:param model: model class
:param input_data: input data placeholder
:param output_data: output data placeholder
:param vocab_size:
:param rnn_size:
:param num_layers:
:param batch_size:
:param learning_rate:
:return:
"""
end_points = {} #1、选择网络
if model == 'rnn':
cell_fun = tf.contrib.rnn.BasicRNNCell #RNN API
elif model == 'gru':
cell_fun = tf.contrib.rnn.GRUCell
elif model == 'lstm':
cell_fun = tf.contrib.rnn.BasicLSTMCell cell = cell_fun(rnn_size, state_is_tuple=True)
cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers, state_is_tuple=True) #lstm api #2、lstm 状态初始化
if output_data is not None:
initial_state = cell.zero_state(batch_size, tf.float32)
else:
initial_state = cell.zero_state(1, tf.float32) #3、使用cpu运算
with tf.device("/cpu:0"):
embedding = tf.get_variable('embedding', initializer=tf.random_uniform(
[vocab_size + 1, rnn_size], -1.0, 1.0))
inputs = tf.nn.embedding_lookup(embedding, input_data) # [batch_size, ?, rnn_size] = [64, ?, 128]
outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state)
output = tf.reshape(outputs, [-1, rnn_size])
#4、模型建立
weights = tf.Variable(tf.truncated_normal([rnn_size, vocab_size + 1]))
bias = tf.Variable(tf.zeros(shape=[vocab_size + 1]))
logits = tf.nn.bias_add(tf.matmul(output, weights), bias=bias)
# [?, vocab_size+1]
#5、损失以及优化
if output_data is not None:
# output_data must be one-hot encode
labels = tf.one_hot(tf.reshape(output_data, [-1]), depth=vocab_size + 1)
# should be [?, vocab_size+1] loss = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)
# loss shape should be [?, vocab_size+1]
total_loss = tf.reduce_mean(loss)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(total_loss) end_points['initial_state'] = initial_state
end_points['output'] = output
end_points['train_op'] = train_op
end_points['total_loss'] = total_loss
end_points['loss'] = loss
end_points['last_state'] = last_state
else:
prediction = tf.nn.softmax(logits) end_points['initial_state'] = initial_state
end_points['last_state'] = last_state
end_points['prediction'] = prediction return end_points
6、dataset中poems.py
# -*- coding: utf-8 -*-
# file: poems.py import collections
import os
import sys
import numpy as np start_token = 'G'
end_token = 'E' def process_poems(file_name):
"""
诗数据处理,
:param file_name: 文件名
:return:
"""
# 诗集
poems = []
with open(file_name, "r", encoding='utf-8', ) as f:
for line in f.readlines():
try:
title, content = line.strip().split(':')
content = content.replace(' ', '')
#过滤不符合的诗,或者脏数据
if '_' in content or '(' in content or '(' in content or '《' in content or '[' in content or \
start_token in content or end_token in content:
continue
if len(content) < 5 or len(content) > 79:
continue
content = start_token + content + end_token
poems.append(content)
except ValueError as e:
pass
# 按诗的字数排序
poems = sorted(poems, key=lambda l: len(line)) # 统计每个字出现次数
all_words = []
for poem in poems:
all_words += [word for word in poem]
# 这里根据包含了每个字对应的频率
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs) # 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word_int_map = dict(zip(words, range(len(words))))
poems_vector = [list(map(lambda word: word_int_map.get(word, len(words)), poem)) for poem in poems] return poems_vector, word_int_map, words def generate_batch(batch_size, poems_vec, word_to_int):
# 每次取64首诗进行训练
n_chunk = len(poems_vec) // batch_size
x_batches = []
y_batches = []
for i in range(n_chunk):
start_index = i * batch_size
end_index = start_index + batch_size batches = poems_vec[start_index:end_index]
# 找到这个batch的所有poem中最长的poem的长度
length = max(map(len, batches))
# 填充一个这么大小的空batch,空的地方放空格对应的index标号
x_data = np.full((batch_size, length), word_to_int[' '], np.int32)
for row in range(batch_size):
# 每一行就是一首诗,在原本的长度上把诗还原上去
x_data[row, :len(batches[row])] = batches[row]
y_data = np.copy(x_data)
# y的话就是x向左边也就是前面移动一个
y_data[:, :-1] = x_data[:, 1:]
"""
x_data y_data
[6,2,4,6,9] [2,4,6,9,9]
[1,4,2,8,5] [4,2,8,5,5]
"""
x_batches.append(x_data)
y_batches.append(y_data)
return x_batches, y_batches
7、clean_cn.py
# -*- coding: utf-8 -*-
# file: clean_cn.py """
this script using for clean Chinese corpus.
you can set level for clean, i.e.:
level='all', will clean all character that not Chinese, include punctuations
level='normal', this will generate corpus like normal use, reserve alphabets and numbers
level='clean', this will remove all except Chinese and Chinese punctuations besides, if you want remove complex Chinese characters, just set this to be true:
simple_only=True
"""
import numpy as np
import os
import string cn_punctuation_set = [',', '。', '!', '?', '"', '"', '、']
en_punctuation_set = [',', '.', '?', '!', '"', '"'] def clean_cn_corpus(file_name, clean_level='all', simple_only=True, is_save=True):
"""
clean Chinese corpus.
:param file_name:
:param clean_level:
:param simple_only:
:param is_save:
:return: clean corpus in list type.
"""
if os.path.dirname(file_name):
base_dir = os.path.dirname(file_name)
else:
print('not set dir. please check') save_file = os.path.join(base_dir, os.path.basename(file_name).split('.')[0] + '_cleaned.txt')
with open(file_name, 'r+') as f:
clean_content = []
for l in f.readlines():
l = l.strip()
if l == '':
pass
else:
l = list(l)
should_remove_words = []
for w in l:
if not should_reserve(w, clean_level):
should_remove_words.append(w)
clean_line = [c for c in l if c not in should_remove_words]
clean_line = ''.join(clean_line)
if clean_line != '':
clean_content.append(clean_line)
if is_save:
with open(save_file, 'w+') as f:
for l in clean_content:
f.write(l + '\n')
print('[INFO] cleaned file have been saved to %s.' % save_file)
return clean_content def should_reserve(w, clean_level):
if w == ' ':
return True
else:
if clean_level == 'all':
# only reserve Chinese characters
if w in cn_punctuation_set or w in string.punctuation or is_alphabet(w):
return False
else:
return is_chinese(w)
elif clean_level == 'normal':
# reserve Chinese characters, English alphabet, number
if is_chinese(w) or is_alphabet(w) or is_number(w):
return True
elif w in cn_punctuation_set or w in en_punctuation_set:
return True
else:
return False
elif clean_level == 'clean':
if is_chinese(w):
return True
elif w in cn_punctuation_set:
return True
else:
return False
else:
raise "clean_level not support %s, please set for all, normal, clean" % clean_level def is_chinese(uchar):
"""is chinese"""
if u'\u4e00' <= uchar <= u'\u9fa5':
return True
else:
return False def is_number(uchar):
"""is number"""
if u'\u0030' <= uchar <= u'\u0039':
return True
else:
return False def is_alphabet(uchar):
"""is alphabet"""
if (u'\u0041' <= uchar <= u'\u005a') or (u'\u0061' <= uchar <= u'\u007a'):
return True
else:
return False def semi_angle_to_sbc(uchar):
"""半角转全角"""
inside_code = ord(uchar)
if inside_code < 0x0020 or inside_code > 0x7e:
return uchar
if inside_code == 0x0020:
inside_code = 0x3000
else:
inside_code += 0xfee0
return chr(inside_code) def sbc_to_semi_angle(uchar):
"""全角转半角"""
inside_code = ord(uchar)
if inside_code == 0x3000:
inside_code = 0x0020
else:
inside_code -= 0xfee0
if inside_code < 0x0020 or inside_code > 0x7e:
return uchar
return chr(inside_code)
tensorflow自动写诗的更多相关文章
-
[Swust OJ 385]--自动写诗
题目链接:http://acm.swust.edu.cn/problem/0385/ Time limit(ms): 5000 Memory limit(kb): 65535 Descripti ...
-
tensorflow的写诗代码分析【转】
本文转载自:https://dongzhixiao.github.io/2018/07/21/so-hot/ 今天周六,早晨出门吃饭,全身汗湿透.天气真的是太热了!我决定一天不出门,在屋子里面休息! ...
-
简单明朗的 RNN 写诗教程
目录 简单明朗的 RNN 写诗教程 数据集介绍 代码思路 输入 and 输出 训练集构建 生成一首完整的诗 代码实现 读取文件 统计字数 构建word 与 id的映射 转成one-hot代码 随机打乱 ...
-
为你写诗:3 步搭建 Serverless AI 应用
作者 | 杜万(倚贤) 阿里巴巴技术专家 本文整理自 1 月 2 日社群分享,每月 2 场高质量分享,点击加入社群. 关注"阿里巴巴云原生"公众号,回复关键词 0102 即可下载本 ...
-
神经网络写诗(charRNN)
https://github.com/*tc/pytorch-book 基于pytorch ,许多有趣的小应用.感谢作者! 作者的代码写得非常清晰,配置方法也很明确,只需要按照提示,安装依 ...
-
机器学习PAI为你自动写歌词,妈妈再也不用担心我的freestyle了(提供数据、代码)
背景 最近互联网上出现一个热词就是“freestyle”,源于一个比拼rap的综艺节目.在节目中需要大量考验选手的freestyle能力,freestyle指的是rapper即兴的根据一段主题讲一串r ...
-
AI:为你写诗,为你做不可能的事
最近,一档全程高能的神仙节目,高调地杀入了我们的视野: 没错,就是撒贝宁主持,董卿.康辉等央视名嘴作为评审嘉宾,同时集齐央视"三大名嘴"同台的央视<主持人大赛>,这够不 ...
-
急速搭建 Serverless AI 应用:为你写诗
前言 首先介绍下在本文出现的几个比较重要的概念: 函数计算(Function Compute): 函数计算是一个事件驱动的服务,通过函数计算,用户无需管理服务器等运行情况,只需编写代码并上传.函数计算 ...
-
Qt侠:像写诗一样写代码,玩游戏一样的开心心情,还能领工资!
[软]上海-Qt侠 2017/7/12 16:11:20我完全是兴趣主导,老板不给我钱,我也要写好代码!白天干,晚上干,周一周五干,周末继续干!编程已经深入我的基因,深入我的骨髓,深入我的灵魂!当我解 ...
随机推荐
-
Python for Informatics 第11章 正则表达式一(译)
注:文章原文为Dr. Charles Severance 的 <Python for Informatics>.文中代码用3.4版改写,并在本机测试通过. 目前为止,我们一直在通读文件,查 ...
-
android Animation动画的xml使用
在Android应用程序,使用动画效果,能带给用户更好的感觉,做动画能够通过XML或Android代码来实现. Animation动画效果的实现能够通过两种方式进行实现,一种是tweened anim ...
-
SPM HW1 A project
项目分析 --民航航班异常轨迹可视分析 最近完成的一个项目是一个可视化大作业--民航航班异常轨迹可视分析.要求利用已给的8G飞机的飞行记录数据,将飞机的飞行轨迹在浏览器中进行飞行轨迹高维可视化以及对异 ...
-
localhost,127.x.x.x和 0.0.0.0区别
之前遇到过一件很纳闷的事,明明用webpack-dev-server监听了一个端口xx,用localhost:xx可以打开,但是依然可以在localhost:xx来启动另一个服务. 后来我看来了下we ...
-
linux mint18 cinnamon 64bit 安装 docker
参考官方文档:https://docs.docker.com/engine/installation/linux/ubuntu/ 1. 安装一些使 apt 可以使用 https 的源 sudo apt ...
-
ADB——应用交互
使用ADB与手机应用交互 应用交互的操作包括:启动应用 / 调起Activity.调起Services.停止Service.发送广播.强行停止应用 基本命令 am <command> 常用 ...
-
SPA游标采集之去除重复
注:转:http://shsnc2014.blog.163.com/blog/static/2403690822014102411217903/ 当我们做数据库升级项目的时候,我们一般会去做性能回归测 ...
-
jquery val() text() html()的区别
value()主要用在表单元素上,如果其他的元素获取value是通过attract()的方法,text()是获取元素的纯文本,如果text(“content”)就会更改元素的文本内容:html()获取 ...
-
css溢出滚动条及去除滚动条的方法
<div class="father"> <div class="childern"></div> </div> ...
-
《C#高级编程》学习笔记------抗变和协变
1.协变和抗变 在.NET 4之前,泛型接口是不变的..NET 4通过协变和抗变为泛型接口和泛型委托添加了一个重要的扩展.协变和抗变指对参数和返回值的类型进行转换.例如,可以给一个需要Shape参数的 ...