题意:给定n棵树,其中有一些已经涂了颜色,然后让你把没有涂色的树涂色使得所有的树能够恰好分成k组,让你求最少的花费是多少。
析:这是一个DP题,dp[i][j][k]表示第 i 棵树涂第 j 种颜色恰好分成 k 组,然后状态转移方程是什么呢?
如果第 i 棵已经涂了,那么要么和第 i-1 棵一组,要么不和第 i-1 棵一组。
如果第 i 棵没有涂,和上面差不多,就是加上要涂的费用,并且要选择最少的。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <list>
#include <sstream>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e2 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 1, 0, 0, 1, 1, -1, -1};
const int dc[] = {0, 0, 1, -1, 1, -1, 1, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL cor[maxn], w[maxn][maxn];
LL dp[maxn][maxn][maxn]; int main(){
int K;
while(scanf("%d %d %d", &n, &m, &K) == 3){
for(int i = 1; i <= n; ++i) scanf("%I64d", &cor[i]);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%I64d", &w[i][j]); for(int i = 0; i <= n; ++i) for(int j = 0; j <= m; ++j)
for(int k = 0; k <= K; ++k) dp[i][j][k] = LNF; dp[0][0][0] = 0;
for(int i = 1; i <= n; ++i){
if(cor[i]){
for(int k = 1; k <= K; ++k){
dp[i][cor[i]][k] = Min(dp[i][cor[i]][k], dp[i-1][cor[i]][k]);
for(int j = 0; j <= m; ++j){
if(j != cor[i]) dp[i][cor[i]][k] = Min(dp[i][cor[i]][k], dp[i-1][j][k-1]);
}
}
}
else{
for(int k = 1; k <= K; ++k){
for(int j = 1; j <= m; ++j){
dp[i][j][k] = Min(dp[i][j][k], dp[i-1][j][k] + w[i][j]);
for(int l = 0; l <= m; ++l){
if(l != j) dp[i][j][k] = Min(dp[i][j][k], dp[i-1][l][k-1] + w[i][j]);
}
}
}
}
}
LL ans = LNF;
for(int i = 1; i <= m; ++i) ans = Min(ans, dp[n][i][K]);
if(ans == LNF) ans = -1;
cout << ans << endl;
}
return 0;
}
CodeForces 711C Coloring Trees (DP)的更多相关文章
-
Codeforces 677C. Coloring Trees dp
C. Coloring Trees time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...
-
codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
-
【动态规划】Codeforces 711C Coloring Trees
题目链接: http://codeforces.com/problemset/problem/711/C 题目大意: 给N棵树,M种颜色,已经有颜色的不能涂色,没颜色为0,可以涂色,每棵树I涂成颜色J ...
-
CodeForces 711C Coloring Trees
简单$dp$. $dp[i][j][k]$表示:前$i$个位置染完色,第$i$个位置染的是$j$这种颜色,前$i$个位置分成了$k$组的最小花费.总复杂度$O({n^4})$. #pragma com ...
-
codeforces 711C C. Coloring Trees(dp)
题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
-
Codeforces Round #369 (Div. 2) C. Coloring Trees DP
C. Coloring Trees ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...
-
CodeForces #369 C. Coloring Trees DP
题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少. K:连续的颜色为一组 ...
-
C. Coloring Trees DP
传送门:http://codeforces.com/problemset/problem/711/C 题目: C. Coloring Trees time limit per test 2 secon ...
-
Code Forces 711C Coloring Trees
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
随机推荐
-
Hdu 4681 2013 Multi-University Training Contest 8 String
带跨越式的LCS,同样是在朴素的LCS上加入一种跨越一段的转移,这样我们要预处理出跨越一段给定串的转移函数. 这个题同样可以正反两边LCS做 呆马: #include <iostream> ...
-
越狱Season 1- Episode 22: Flight
Season 1, Episode 22: Flight -Franklin: You know you got a couple of foxes in your henhouse, right? ...
-
UNDERSTANDING POSTGRESQL.CONF: CHECKPOINT_SEGMENTS, CHECKPOINT_TIMEOUT, CHECKPOINT_WARNING
While there are some docs on it, I decided to write about it, in perhaps more accessible language – ...
-
基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeli ...
-
Cookie Session和自定义分页
cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...
-
使用引用计数和copy-on_write实现String类
本文写于2017-01-18,从老账号迁移到本账号,原文地址:https://www.cnblogs.com/huangweiyang/p/6295420.html 这算是我开始复习的内容吧,关于st ...
-
怎样知道 CPU 是否支持虚拟化技术(VT) | Linux 中国
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/F8qG7f9YD02Pe/article/details/79832475 wx_fmt=png&a ...
-
Redis用在哪里
1. 高并发缓存/共享session: UserInfo getUserInfo (long id) {} 取: userRedisKey = "user:info: ...
-
Try-Catch真的会影响程序性能吗
很多帖子都分析过Try-Catch的机制,以及其对性能的影响. 但是并没有证据证明,Try-Catch过于损耗了系统的性能,尤其是在托管环境下.记得园子里有位网友使用StopWatch分析过Try-C ...
-
JDK1.7的HashMap的put(key, value)源码剖析
目录 HashMap的put操作源码解析 1.官方文档 2.put(key, value) 3.完结 HashMap的put操作源码解析 1.官方文档 1.1.继承结构 java.lang.Objec ...