前面我们主要着重于codec、platform、machine驱动程序中如何使用和建立dapm所需要的widget,route,这些是音频驱动开发人员必须要了解的内容,经过前几章的介绍,我们应该知道如何在alsa音频驱动的3大部分(codec、platform、machine)中,按照所使用的音频硬件结构,定义出相应的widget,kcontrol,以及必要的音频路径,而在本章中,我们将会深入dapm的核心部分,看看各个widget之间是如何建立连接关系,形成一条完整的音频路径。
/*****************************************************************************************************/
声明:本博内容均由http://blog.csdn.net/droidphone原创,转载请注明出处,谢谢!
/*****************************************************************************************************/
前面我们已经简单地介绍过,驱动程序需要使用以下api函数创建widget:
- snd_soc_dapm_new_controls
- snd_soc_dapm_new_widgets
创建widget:snd_soc_dapm_new_controls
snd_soc_dapm_new_controls函数完成widget的创建工作,并把这些创建好的widget注册在声卡的widgets链表中,我们看看他的定义:
- int snd_soc_dapm_new_controls(struct snd_soc_dapm_context *dapm,
- const struct snd_soc_dapm_widget *widget,
- int num)
- {
- ......
- for (i = 0; i < num; i++) {
- w = snd_soc_dapm_new_control(dapm, widget);
- if (!w) {
- dev_err(dapm->dev,
- "ASoC: Failed to create DAPM control %s\n",
- widget->name);
- ret = -ENOMEM;
- break;
- }
- widget++;
- }
- ......
- return ret;
- }
该函数只是简单的一个循环,为传入的widget模板数组依次调用snd_soc_dapm_new_control函数,实际的工作由snd_soc_dapm_new_control完成,继续进入该函数,看看它做了那些工作。
- static struct snd_soc_dapm_widget *
- snd_soc_dapm_new_control(struct snd_soc_dapm_context *dapm,
- const struct snd_soc_dapm_widget *widget)
- {
- struct snd_soc_dapm_widget *w;
- int ret;
- if ((w = dapm_cnew_widget(widget)) == NULL)
- return NULL;
由dapm_cnew_widget完成内存申请和拷贝模板的动作。接下来,根据widget的类型做不同的处理:
- switch (w->id) {
- case snd_soc_dapm_regulator_supply:
- w->regulator = devm_regulator_get(dapm->dev, w->name);
- ......
- if (w->on_val & SND_SOC_DAPM_REGULATOR_BYPASS) {
- ret = regulator_allow_bypass(w->regulator, true);
- ......
- }
- break;
- case snd_soc_dapm_clock_supply:
- #ifdef CONFIG_CLKDEV_LOOKUP
- w->clk = devm_clk_get(dapm->dev, w->name);
- ......
- #else
- return NULL;
- #endif
- break;
- default:
- break;
- }
对于snd_soc_dapm_regulator_supply类型的widget,根据widget的名称获取对应的regulator结构,对于snd_soc_dapm_clock_supply类型的widget,根据widget的名称,获取对应的clock结构。接下来,根据需要,在widget的名称前加入必要的前缀:
- if (dapm->codec && dapm->codec->name_prefix)
- w->name = kasprintf(GFP_KERNEL, "%s %s",
- dapm->codec->name_prefix, widget->name);
- else
- w->name = kasprintf(GFP_KERNEL, "%s", widget->name);
然后,为不同类型的widget设置合适的power_check电源状态回调函数,widget类型和对应的power_check回调函数设置如下表所示:
widget类型 | power_check回调函数 |
---|---|
mixer类: snd_soc_dapm_switch snd_soc_dapm_mixer snd_soc_dapm_mixer_named_ctl |
dapm_generic_check_power |
mux类: snd_soc_dapm_mux snd_soc_dapm_mux snd_soc_dapm_mux |
dapm_generic_check_power |
snd_soc_dapm_dai_out | dapm_adc_check_power |
snd_soc_dapm_dai_in | dapm_dac_check_power |
端点类: snd_soc_dapm_adc snd_soc_dapm_aif_out snd_soc_dapm_dac snd_soc_dapm_aif_in snd_soc_dapm_pga snd_soc_dapm_out_drv snd_soc_dapm_input snd_soc_dapm_output snd_soc_dapm_micbias snd_soc_dapm_spk snd_soc_dapm_hp snd_soc_dapm_mic snd_soc_dapm_line snd_soc_dapm_dai_link |
dapm_generic_check_power |
电源/时钟/影子widget: snd_soc_dapm_supply snd_soc_dapm_regulator_supply snd_soc_dapm_clock_supply snd_soc_dapm_kcontrol |
dapm_supply_check_power |
其它类型 | dapm_always_on_check_power |
当音频路径发生变化时,power_check回调会被调用,用于检查该widget的电源状态是否需要更新。power_check设置完成后,需要设置widget所属的codec、platform和dapm context,几个用于音频路径的链表也需要初始化,然后,把该widget加入到声卡的widgets链表中:
- w->dapm = dapm;
- w->codec = dapm->codec;
- w->platform = dapm->platform;
- INIT_LIST_HEAD(&w->sources);
- INIT_LIST_HEAD(&w->sinks);
- INIT_LIST_HEAD(&w->list);
- INIT_LIST_HEAD(&w->dirty);
- list_add(&w->list, &dapm->card->widgets);
几个链表的作用如下:
- sources 用于链接所有连接到该widget输入端的snd_soc_path结构
- sinks 用于链接所有连接到该widget输出端的snd_soc_path结构
- list 用于链接到声卡的widgets链表
- dirty 用于链接到声卡的dapm_dirty链表
最后,把widget设置为connect状态:
- /* machine layer set ups unconnected pins and insertions */
- w->connected = 1;
- return w;
connected字段代表着引脚的连接状态,目前,只有以下这些widget使用connected字段:
- snd_soc_dapm_output
- snd_soc_dapm_input
- snd_soc_dapm_hp
- snd_soc_dapm_spk
- snd_soc_dapm_line
- snd_soc_dapm_vmid
- snd_soc_dapm_mic
- snd_soc_dapm_siggen
- snd_soc_dapm_enable_pin
- snd_soc_dapm_force_enable_pin
- snd_soc_dapm_disable_pin
- snd_soc_dapm_nc_pin
- 为widget分配内存,并拷贝参数中传入的在驱动中定义好的模板
- 设置power_check回调函数
- 把widget挂在声卡的widgets链表中
为widget建立dapm kcontrol
定义一个widget,我们需要指定两个很重要的内容:一个是用于控制widget的电源状态的reg/shift等寄存器信息,另一个是用于控制音频路径切换的dapm kcontrol信息,这些dapm kcontrol有它们自己的reg/shift寄存器信息用于切换widget的路径连接方式。前一节的内容中,我们只是创建了widget的实例,并把它们注册到声卡的widgts链表中,但是到目前为止,包含在widget中的dapm kcontrol并没有建立起来,dapm框架在声卡的初始化阶段,等所有的widget(包括machine、platform、codec)都创建好之后,通过snd_soc_dapm_new_widgets函数,创建widget内包含的dapm kcontrol,并初始化widget的初始电源状态和音频路径的初始连接状态。我们看看声卡的初始化函数,都有那些初始化与dapm有关:
- static int snd_soc_instantiate_card(struct snd_soc_card *card)
- {
- ......
- /* card bind complete so register a sound card */
- ret = snd_card_create(SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1,
- card->owner, 0, &card->snd_card);
- ......
- card->dapm.bias_level = SND_SOC_BIAS_OFF;
- card->dapm.dev = card->dev;
- card->dapm.card = card;
- list_add(&card->dapm.list, &card->dapm_list);
- #ifdef CONFIG_DEBUG_FS
- snd_soc_dapm_debugfs_init(&card->dapm, card->debugfs_card_root);
- #endif
- ......
- if (card->dapm_widgets) /* 创建machine级别的widget */
- snd_soc_dapm_new_controls(&card->dapm, card->dapm_widgets,
- card->num_dapm_widgets);
- ......
- snd_soc_dapm_link_dai_widgets(card); /* 连接dai widget */
- if (card->controls) /* 建立machine级别的普通kcontrol控件 */
- snd_soc_add_card_controls(card, card->controls, card->num_controls);
- if (card->dapm_routes) /* 注册machine级别的路径连接信息 */
- snd_soc_dapm_add_routes(&card->dapm, card->dapm_routes,
- card->num_dapm_routes);
- ......
- if (card->fully_routed) /* 如果该标志被置位,自动把codec中没有路径连接信息的引脚设置为无用widget */
- list_for_each_entry(codec, &card->codec_dev_list, card_list)
- snd_soc_dapm_auto_nc_codec_pins(codec);
- snd_soc_dapm_new_widgets(card); /*初始化widget包含的dapm kcontrol、电源状态和连接状态*/
- ret = snd_card_register(card->snd_card);
- ......
- card->instantiated = 1;
- snd_soc_dapm_sync(&card->dapm);
- ......
- return 0;
- }
正如我添加的注释中所示,在完成machine级别的widget和route处理之后,调用的snd_soc_dapm_new_widgets函数,来为所有已经注册的widget初始化他们所包含的dapm kcontrol,并初始化widget的电源状态和路径连接状态。下面我们看看snd_soc_dapm_new_widgets函数的工作过程。
snd_soc_dapm_new_widgets函数
该函数通过声卡的widgets链表,遍历所有已经注册了的widget,其中的new字段用于判断该widget是否已经执行过snd_soc_dapm_new_widgets函数,如果num_kcontrols字段有数值,表明该widget包含有若干个dapm kcontrol,那么就需要为这些kcontrol分配一个指针数组,并把数组的首地址赋值给widget的kcontrols字段,该数组存放着指向这些kcontrol的指针,当然现在这些都是空指针,因为实际的kcontrol现在还没有被创建:
- int snd_soc_dapm_new_widgets(struct snd_soc_card *card)
- {
- ......
- list_for_each_entry(w, &card->widgets, list)
- {
- if (w->new)
- continue;
- if (w->num_kcontrols) {
- w->kcontrols = kzalloc(w->num_kcontrols *
- sizeof(struct snd_kcontrol *),
- GFP_KERNEL);
- ......
- }
接着,对几种能影响音频路径的widget,创建并初始化它们所包含的dapm kcontrol:
- switch(w->id) {
- case snd_soc_dapm_switch:
- case snd_soc_dapm_mixer:
- case snd_soc_dapm_mixer_named_ctl:
- dapm_new_mixer(w);
- break;
- case snd_soc_dapm_mux:
- case snd_soc_dapm_virt_mux:
- case snd_soc_dapm_value_mux:
- dapm_new_mux(w);
- break;
- case snd_soc_dapm_pga:
- case snd_soc_dapm_out_drv:
- dapm_new_pga(w);
- break;
- default:
- break;
- }
需要用到的创建函数分别是:
- dapm_new_mixer() 对于mixer类型,用该函数创建dapm kcontrol;
- dapm_new_mux() 对于mux类型,用该函数创建dapm kcontrol;
- dapm_new_pga() 对于pga类型,用该函数创建dapm kcontrol;
然后,根据widget寄存器的当前值,初始化widget的电源状态,并设置到power字段中:
- /* Read the initial power state from the device */
- if (w->reg >= 0) {
- val = soc_widget_read(w, w->reg) >> w->shift;
- val &= w->mask;
- if (val == w->on_val)
- w->power = 1;
- }
接着,设置new字段,表明该widget已经初始化完成,我们还要吧该widget加入到声卡的dapm_dirty链表中,表明该widget的状态发生了变化,稍后在合适的时刻,dapm框架会扫描dapm_dirty链表,统一处理所有已经变化的widget。为什么要统一处理?因为dapm要控制各种widget的上下电顺序,同时也是为了减少寄存器的读写次数(多个widget可能使用同一个寄存器):
- w->new = 1;
- dapm_mark_dirty(w, "new widget");
- dapm_debugfs_add_widget(w);
最后,通过dapm_power_widgets函数,统一处理所有位于dapm_dirty链表上的widget的状态改变:
- dapm_power_widgets(card, SND_SOC_DAPM_STREAM_NOP);
- ......
- return 0;
dapm mixer kcontrol
- static int dapm_new_mixer(struct snd_soc_dapm_widget *w)
- {
- int i, ret;
- struct snd_soc_dapm_path *path;
- /* add kcontrol */
- <span style="font-family:Arial,Helvetica,sans-serif">(1)</span> for (i = 0; i < w->num_kcontrols; i++) {
- /* match name */
- (2) list_for_each_entry(path, &w->sources, list_sink) {
- /* mixer/mux paths name must match control name */
- (3) if (path->name != (char *)w->kcontrol_news[i].name)
- continue;
- (4) if (w->kcontrols[i]) {
- dapm_kcontrol_add_path(w->kcontrols[i], path);
- continue;
- }
- (5) ret = dapm_create_or_share_mixmux_kcontrol(w, i);
- if (ret < 0)
- return ret;
- (6) dapm_kcontrol_add_path(w->kcontrols[i], path);
- }
- }
- return 0;
- }
(1) 因为一个mixer是由多个kcontrol组成的,每个kcontrol控制着mixer的一个输入端的开启和关闭,所以,该函数会根据kcontrol的数量做循环,逐个建立对应的kcontrol。
- static void dapm_kcontrol_add_path(const struct snd_kcontrol *kcontrol,
- struct snd_soc_dapm_path *path)
- {
- struct dapm_kcontrol_data *data = snd_kcontrol_chip(kcontrol);
- /* 把kcontrol连接的path加入到paths链表中 */
- /* paths链表所在的dapm_kcontrol_data结构会保存在kcontrol的private_data字段中 */
- list_add_tail(&path->list_kcontrol, &data->paths);
- if (data->widget) {
- snd_soc_dapm_add_path(data->widget->dapm, data->widget,
- path->source, NULL, NULL);
- }
- }
dapm mux kcontrol
因为一个widget最多只会包含一个mux类型的damp kcontrol,所以他的创建方法稍有不同,dapm框架使用dapm_new_mux函数来创建mux类型的dapm kcontrol:
- static int dapm_new_mux(struct snd_soc_dapm_widget *w)
- {
- struct snd_soc_dapm_context *dapm = w->dapm;
- struct snd_soc_dapm_path *path;
- int ret;
- (1) if (w->num_kcontrols != 1) {
- dev_err(dapm->dev,
- "ASoC: mux %s has incorrect number of controls\n",
- w->name);
- return -EINVAL;
- }
- if (list_empty(&w->sources)) {
- dev_err(dapm->dev, "ASoC: mux %s has no paths\n", w->name);
- return -EINVAL;
- }
- (2) ret = dapm_create_or_share_mixmux_kcontrol(w, 0);
- if (ret < 0)
- return ret;
- (3) list_for_each_entry(path, &w->sources, list_sink)
- dapm_kcontrol_add_path(w->kcontrols[0], path);
- return 0;
- }
dapm pga kcontrol
- static int dapm_new_pga(struct snd_soc_dapm_widget *w)
- {
- if (w->num_kcontrols)
- dev_err(w->dapm->dev,
- "ASoC: PGA controls not supported: '%s'\n", w->name);
- return 0;
- }
dapm_create_or_share_mixmux_kcontrol函数
上面所说的mixer类型和mux类型的widget,在创建他们所包含的dapm kcontrol时,最后其实都是使用了dapm_create_or_share_mixmux_kcontrol函数来完成创建工作的,所以在这里我们有必要分析一下这个函数的工作原理。这个函数中有很大一部分代码实在处理kcontrol的名字是否要加入codec的前缀,我们会忽略这部分的代码,感兴趣的读者可以自己查看内核的代码,路径在:sound/soc/soc-dapm.c中,简化后的代码如下:
- static int dapm_create_or_share_mixmux_kcontrol(struct snd_soc_dapm_widget *w,
- int kci)
- {
- ......
- (1) shared = dapm_is_shared_kcontrol(dapm, w, &w->kcontrol_news[kci],
- &kcontrol);
- (2) if (!kcontrol) {
- (3) kcontrol = snd_soc_cnew(&w->kcontrol_news[kci], NULL, name,prefix);
- ......
- kcontrol->private_free = dapm_kcontrol_free;
- (4) ret = dapm_kcontrol_data_alloc(w, kcontrol);
- ......
- (5) ret = snd_ctl_add(card, kcontrol);
- ......
- }
- (6) ret = dapm_kcontrol_add_widget(kcontrol, w);
- ......
- (7) w->kcontrols[kci] = kcontrol;
- return 0;
- }
(3) 标准的kcontrol创建函数,请参看:Linux ALSA声卡驱动之四:Control设备的创建中的“创建control“一节的内容。
(5) 标准的kcontrol创建函数,请参看:Linux ALSA声卡驱动之四:Control设备的创建中的“创建control“一节的内容。
现在。我们总结一下,创建一个widget所包含的kcontrol所做的工作:
- 循环每一个输入端,为每个输入端依次执行下面的一系列操作
- 为每个输入端创建一个kcontrol,能共享的则直接使用创建好的kcontrol
- kcontrol的private_data字段保存着这些共享widget的信息
- 如果支持autodisable特性,每个输入端还要额外地创建一个虚拟的snd_soc_dapm_kcontrol类型的影子widget,该影子widget也记录在private_data字段中
- 创建好的kcontrol会依次存放在widget的kcontrols数组中,供路径的控制和匹配之用。
为widget建立连接关系
如果widget之间没有连接关系,dapm就无法实现动态的电源管理工作,正是widget之间有了连结关系,这些连接关系形成了一条所谓的完成的音频路径,dapm可以顺着这条路径,统一控制路径上所有widget的电源状态,前面我们已经知道,widget之间是使用snd_soc_path结构进行连接的,驱动要做的是定义一个snd_soc_route结构数组,该数组的每个条目描述了目的widget的和源widget的名称,以及控制这个连接的kcontrol的名称,最终,驱动程序使用api函数snd_soc_dapm_add_routes来注册这些连接信息,接下来我们就是要分析该函数的具体实现方式:
- int snd_soc_dapm_add_routes(struct snd_soc_dapm_context *dapm,
- const struct snd_soc_dapm_route *route, int num)
- {
- int i, r, ret = 0;
- mutex_lock_nested(&dapm->card->dapm_mutex, SND_SOC_DAPM_CLASS_INIT);
- for (i = 0; i < num; i++) {
- r = snd_soc_dapm_add_route(dapm, route);
- ......
- route++;
- }
- mutex_unlock(&dapm->card->dapm_mutex);
- return ret;
- }
该函数只是一个循环,依次对参数传入的数组调用snd_soc_dapm_add_route,主要的工作由snd_soc_dapm_add_route完成。我们进入snd_soc_dapm_add_route函数看看:
- static int snd_soc_dapm_add_route(struct snd_soc_dapm_context *dapm,
- const struct snd_soc_dapm_route *route)
- {
- struct snd_soc_dapm_widget *wsource = NULL, *wsink = NULL, *w;
- struct snd_soc_dapm_widget *wtsource = NULL, *wtsink = NULL;
- const char *sink;
- const char *source;
- ......
- list_for_each_entry(w, &dapm->card->widgets, list) {
- if (!wsink && !(strcmp(w->name, sink))) {
- wtsink = w;
- if (w->dapm == dapm)
- wsink = w;
- continue;
- }
- if (!wsource && !(strcmp(w->name, source))) {
- wtsource = w;
- if (w->dapm == dapm)
- wsource = w;
- }
- }
上面的代码我再次省略了关于名称前缀的处理部分。我们可以看到,用widget的名字来比较,遍历声卡的widgets链表,找出源widget和目的widget的指针,这段代码虽然正确,但我总感觉少了一个判断退出循环的条件,如果链表的开头就找到了两个widget,还是要遍历整个链表才结束循环,好浪费时间。
下面,如果在本dapm context中没有找到,则使用别的dapm context中找到的widget:
- if (!wsink)
- wsink = wtsink;
- if (!wsource)
- wsource = wtsource;
最后,使用来增加一条连接信息:
- ret = snd_soc_dapm_add_path(dapm, wsource, wsink, route->control,
- route->connected);
- ......
- return 0;
- }
snd_soc_dapm_add_path函数是整个调用链条中的关键,我们来分析一下:
- static int snd_soc_dapm_add_path(struct snd_soc_dapm_context *dapm,
- struct snd_soc_dapm_widget *wsource, struct snd_soc_dapm_widget *wsink,
- const char *control,
- int (*connected)(struct snd_soc_dapm_widget *source,
- struct snd_soc_dapm_widget *sink))
- {
- struct snd_soc_dapm_path *path;
- int ret;
- path = kzalloc(sizeof(struct snd_soc_dapm_path), GFP_KERNEL);
- if (!path)
- return -ENOMEM;
- path->source = wsource;
- path->sink = wsink;
- path->connected = connected;
- INIT_LIST_HEAD(&path->list);
- INIT_LIST_HEAD(&path->list_kcontrol);
- INIT_LIST_HEAD(&path->list_source);
- INIT_LIST_HEAD(&path->list_sink);
函数的一开始,首先为这个连接分配了一个snd_soc_path结构,path的source和sink字段分别指向源widget和目的widget,connected字段保存connected回调函数,初始化几个snd_soc_path结构中的几个链表。
- /* check for external widgets */
- if (wsink->id == snd_soc_dapm_input) {
- if (wsource->id == snd_soc_dapm_micbias ||
- wsource->id == snd_soc_dapm_mic ||
- wsource->id == snd_soc_dapm_line ||
- wsource->id == snd_soc_dapm_output)
- wsink->ext = 1;
- }
- if (wsource->id == snd_soc_dapm_output) {
- if (wsink->id == snd_soc_dapm_spk ||
- wsink->id == snd_soc_dapm_hp ||
- wsink->id == snd_soc_dapm_line ||
- wsink->id == snd_soc_dapm_input)
- wsource->ext = 1;
- }
这段代码用于判断是否有外部连接关系,如果有,置位widget的ext字段。判断方法从代码中可以方便地看出:
- 目的widget是一个输入脚,如果源widget是mic、line、micbias或output,则认为目的widget具有外部连接关系。
- 源widget是一个输出脚,如果目的widget是spk、hp、line或input,则认为源widget具有外部连接关系。
- dapm_mark_dirty(wsource, "Route added");
- dapm_mark_dirty(wsink, "Route added");
- /* connect static paths */
- if (control == NULL) {
- list_add(&path->list, &dapm->card->paths);
- list_add(&path->list_sink, &wsink->sources);
- list_add(&path->list_source, &wsource->sinks);
- path->connect = 1;
- return 0;
- }
因为增加了连结关系,所以把源widget和目的widget加入到dapm_dirty链表中。如果没有kcontrol来控制该连接关系,则这是一个静态连接,直接用path把它们连接在一起。在接着往下看:
- /* connect dynamic paths */
- switch (wsink->id) {
- case snd_soc_dapm_adc:
- case snd_soc_dapm_dac:
- case snd_soc_dapm_pga:
- case snd_soc_dapm_out_drv:
- case snd_soc_dapm_input:
- case snd_soc_dapm_output:
- case snd_soc_dapm_siggen:
- case snd_soc_dapm_micbias:
- case snd_soc_dapm_vmid:
- case snd_soc_dapm_pre:
- case snd_soc_dapm_post:
- case snd_soc_dapm_supply:
- case snd_soc_dapm_regulator_supply:
- case snd_soc_dapm_clock_supply:
- case snd_soc_dapm_aif_in:
- case snd_soc_dapm_aif_out:
- case snd_soc_dapm_dai_in:
- case snd_soc_dapm_dai_out:
- case snd_soc_dapm_dai_link:
- case snd_soc_dapm_kcontrol:
- list_add(&path->list, &dapm->card->paths);
- list_add(&path->list_sink, &wsink->sources);
- list_add(&path->list_source, &wsource->sinks);
- path->connect = 1;
- return 0;
按照目的widget来判断,如果属于以上这些类型,直接把它们连接在一起即可,这段感觉有点多余,因为通常以上这些类型的widget本来也没有kcontrol,直接用上一段代码就可以了,也许是dapm的作者们想着以后可能会有所扩展吧。
- case snd_soc_dapm_mux:
- case snd_soc_dapm_virt_mux:
- case snd_soc_dapm_value_mux:
- ret = dapm_connect_mux(dapm, wsource, wsink, path, control,
- &wsink->kcontrol_news[0]);
- if (ret != 0)
- goto err;
- break;
- case snd_soc_dapm_switch:
- case snd_soc_dapm_mixer:
- case snd_soc_dapm_mixer_named_ctl:
- ret = dapm_connect_mixer(dapm, wsource, wsink, path, control);
- if (ret != 0)
- goto err;
- break;
目的widget如果是mixer和mux类型,分别用dapm_connect_mixer和dapm_connect_mux函数完成连接工作,这两个函数我们后面再讲。
- case snd_soc_dapm_hp:
- case snd_soc_dapm_mic:
- case snd_soc_dapm_line:
- case snd_soc_dapm_spk:
- list_add(&path->list, &dapm->card->paths);
- list_add(&path->list_sink, &wsink->sources);
- list_add(&path->list_source, &wsource->sinks);
- path->connect = 0;
- return 0;
- }
- return 0;
- err:
- kfree(path);
- return ret;
- }
hp、mic、line和spk这几种widget属于外部器件,也只是简单地连接在一起,不过connect字段默认为是未连接状态。
- static int dapm_connect_mixer(struct snd_soc_dapm_context *dapm,
- struct snd_soc_dapm_widget *src, struct snd_soc_dapm_widget *dest,
- struct snd_soc_dapm_path *path, const char *control_name)
- {
- int i;
- /* search for mixer kcontrol */
- for (i = 0; i < dest->num_kcontrols; i++) {
- if (!strcmp(control_name, dest->kcontrol_news[i].name)) {
- list_add(&path->list, &dapm->card->paths);
- list_add(&path->list_sink, &dest->sources);
- list_add(&path->list_source, &src->sinks);
- path->name = dest->kcontrol_news[i].name;
- dapm_set_path_status(dest, path, i);
- return 0;
- }
- }
- return -ENODEV;
- }
用需要用来连接的kcontrol的名字,和目的widget中的kcontrol模板数组中的名字相比较,找出该kcontrol在widget中的编号,path的名字设置为该kcontrol的名字,然后用dapm_set_path_status函数来初始化该输入端的连接状态。连接两个widget的链表操作和其他widget是一样的。
- static int dapm_connect_mux(struct snd_soc_dapm_context *dapm,
- struct snd_soc_dapm_widget *src, struct snd_soc_dapm_widget *dest,
- struct snd_soc_dapm_path *path, const char *control_name,
- const struct snd_kcontrol_new *kcontrol)
- {
- struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
- int i;
- for (i = 0; i < e->max; i++) {
- if (!(strcmp(control_name, e->texts[i]))) {
- list_add(&path->list, &dapm->card->paths);
- list_add(&path->list_sink, &dest->sources);
- list_add(&path->list_source, &src->sinks);
- path->name = (char*)e->texts[i];
- dapm_set_path_status(dest, path, 0);
- return 0;
- }
- }
- return -ENODEV;
- }
和mixer类型一样用名字进行匹配,只不过mux类型的kcontrol只需一个,所以要通过private_value字段所指向的soc_enum结构找出匹配的输入脚编号,最后也是通过dapm_set_path_status函数来初始化该输入端的连接状态,因为只有一个kcontrol,所以第三个参数是0。连接两个widget的链表操作和其他widget也是一样的。
dapm_set_path_status 该函数根据传入widget中的kcontrol编号,读取实际寄存器的值,根据寄存器的值来初始化这个path是否处于连接状态,详细的代码这里就不贴了。
到这里为止,我们为声卡创建并初始化好了所需的widget,各个widget也通过path连接在了一起,接下来,dapm等待用户的指令,一旦某个dapm kcontrol被用户空间改变,利用这些连接关系,dapm会重新创建音频路径,脱离音频路径的widget会被下电,加入音频路径的widget会被上电,所有的上下电动作都会自动完成,用户空间的应用程序无需关注这些变化,它只管按需要改变某个dapm kcontrol即可。