扩展欧几里得 POJ 1061

时间:2022-09-19 11:26:17

感觉这道题目的数据好水啊。。。我的代码我都觉得姿势特别奇怪。。。竟然还过了。。。

好吧,原来不是姿势奇怪,而是逆元需要用的时候是余数也需要的时候,这里的余数是不需要的,所以就AC了

就说一下碰到的问题吧

x = (x0 + mt) % L;

y = (y0 + ny) % l;

然后x - y = 0;得到

(n - m) * t + k * l = x0 - y0;(t表示时间,k表示跑了几圈,l是一圈的长度)

然后我们和扩展欧几里得做比较:ax+by=gcd(a, b);(后面都写成gcd)

然后我们就可以发现x0-y0是已知的,那么令n-m=a,k=b,d=x0-y0,t=x,y=l;

因为d不一定是gcd,也有可能是gcd的倍数或者毫无关系

当毫无关系的时候就是impossible

当是gcd的倍数的时候,那么我们就对欧几里得进行改进。因此我们可以得到以下的式子:

(a*x*d/c) + (b*y*d/c)=d;

因此,我们的解就是x*d/c

但是这里有一个很重要的问题就是,当x时负数的时候怎么办,那么值也就是负的了呀。

因此我们想到对原来的式子进行改进,得到如下式子:

a*(x*d/c+p*b)+b*(y*d/c-p*a)=d;

所以我们的解就是((x*d/c)%b + b)% b;

扩展欧几里得 POJ 1061的更多相关文章

  1. poj 1061 青蛙的约会 (扩展欧几里得模板)

    青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status ...

  2. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  3. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  4. Poj 1061 青蛙的约会&lpar;扩展欧几里得解线性同余式)

    一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...

  5. poj 1061&lpar;扩展欧几里得定理求不定方程)

    两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...

  6. POJ - 1061 青蛙的约会 (扩展欧几里得求同余式)

    题意:两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对 ...

  7. POJ - 1061 青蛙的约会 扩展欧几里得 &plus; (贝祖公式)最小正整数解

    题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写, ...

  8. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  9. poj 2142 扩展欧几里得解ax&plus;by&equals;c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

随机推荐

  1. 青瓷引擎之纯JavaScript打造HTML5游戏第二弹——《跳跃的方块》Part 10(排行榜界面&amp&semi;界面管理)

    继上一次介绍了<神奇的六边形>的完整游戏开发流程后(可点击这里查看),这次将为大家介绍另外一款魔性游戏<跳跃的方块>的完整开发流程. (点击图片可进入游戏体验) 因内容太多,为 ...

  2. 第八十七天请假 PHP smarty模板配置以及简单的调用方式

    smarty模板的配置文件 <?php define("ROOT",str_replace("\\","/",dirname(__FI ...

  3. CUDA编程学习(三)

    我们知道一个grid包含多个block,而一个block又包含多个thread,下面将是如何进行下thread中的并行. /**** Splot a block into parallel threa ...

  4. upload&period;php ---&gt&semi;文件上传

    <?php header("Content-type:text/html;charset=utf-8"); print_r($_FILES['file']); $filena ...

  5. 几个动画demo

    一.点击扩散效果 这个效果没什么难度,主要是加深对核心动画的理解和使用,但是还是有几个想说明的地方.先看一下效果,具体内容代码里有注释. // // CircleButton.m // UITest ...

  6. 0119——UIImageView的一些属性 和 简单动画实现

    1.contentMode view.contentMode = UIViewContentModeScaleAspectFill; 2.是否实现触摸 3.简单实现动画 图片的名字为campFire0 ...

  7. 【Linux】 字符串和文本处理工具 grep &amp&semi; sed &amp&semi; awk

    Linux字符串&文本处理工具 因为用linux的时候主要用到的还是字符交互界面,所以对字符串的处理变得十分重要.这篇介绍三个常用的字符串处理工具,包括grep,sed和awk ■ grep ...

  8. Oracle 表分区&lpar;Partition&rpar;

    表分区功能能够改善应用程序性能,提高数据库可管理性和可用性,是数据库管理非常关键的技术.数据库通过使用分区提高查询性能,简化日常管理维护工作. 1 分区优点 1) 减少维护工作量,独立管理每个表分区比 ...

  9. jenkins checkstyle:local variable hides a field

    源代码: 1 2 3 4 5 6 7 8 //应用上下文 private static ApplicationContext applicationContext; public static voi ...

  10. 聊聊Python中的生成器和迭代器

    Python中有两个重要的概念,生成器和迭代器,这里详细记录一下. 1. 生成器 什么是生成器呢? 通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包 ...