Q:在给Dataloader设置worker数量(num_worker)时,到底设置多少合适?这个worker到底怎么工作的?
1
2
3
|
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size = batch_size, shuffle = True ,
num_workers = 4 )
|
参数详解:
1、每次dataloader加载数据时:dataloader一次性创建num_worker个worker,(也可以说dataloader一次性创建num_worker个工作进程,worker也是普通的工作进程),并用batch_sampler将指定batch分配给指定worker,worker将它负责的batch加载进RAM。
然后,dataloader从RAM中找本轮迭代要用的batch,如果找到了,就使用。如果没找到,就要num_worker个worker继续加载batch到内存,直到dataloader在RAM中找到目标batch。一般情况下都是能找到的,因为batch_sampler指定batch时当然优先指定本轮要用的batch。
2、num_worker设置得大,好处是寻batch速度快,因为下一轮迭代的batch很可能在上一轮/上上一轮...迭代时已经加载好了。坏处是内存开销大,也加重了CPU负担(worker加载数据到RAM的进程是CPU复制的嘛)。num_workers的经验设置值是自己电脑/服务器的CPU核心数,如果CPU很强、RAM也很充足,就可以设置得更大些。
3、如果num_worker设为0,意味着每一轮迭代时,dataloader不再有自主加载数据到RAM这一步骤(因为没有worker了),而是在RAM中找batch,找不到时再加载相应的batch。缺点当然是速度更慢。
设置大小建议:
1、Dataloader的num_worker设置多少才合适,这个问题是很难有一个推荐的值。有以下几个建议:
2、num_workers=0表示只有主进程去加载batch数据,这个可能会是一个瓶颈。
3、num_workers = 1表示只有一个worker进程用来加载batch数据,而主进程是不参与数据加载的。这样速度也会很慢。
num_workers>0 表示只有指定数量的worker进程去加载数据,主进程不参与。增加num_works也同时会增加cpu内存的消耗。所以num_workers的值依赖于 batch size和机器性能。
4、一般开始是将num_workers设置为等于计算机上的CPU数量
5、最好的办法是缓慢增加num_workers,直到训练速度不再提高,就停止增加num_workers的值。
补充:pytorch中Dataloader()中的num_workers设置问题
如果num_workers的值大于0,要在运行的部分放进__main__()函数里,才不会有错:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
import numpy as np
import torch
from torch.autograd import Variable
import torch.nn.functional
import matplotlib.pyplot as plt
import torch.utils.data as Data
BATCH_SIZE = 5
x = torch.linspace( 1 , 10 , 10 )
y = torch.linspace( 10 , 1 , 10 )
torch_dataset = Data.TensorDataset(x,y)
loader = Data.DataLoader(
dataset = torch_dataset,
batch_size = BATCH_SIZE,
shuffle = True ,
num_workers = 2 ,
)
def main():
for epoch in range ( 3 ):
for step,(batch_x,batch_y) in enumerate (loader):
# training....
print ( 'Epoch:' ,epoch, '| step:' ,step, '| batch x:' ,batch_x.numpy(),
'| batch y:' ,batch_y.numpy())
if __name__ = = "__main__" :
main()
'''
# 下面这样直接运行会报错:
for epoch in range(3):
for step,(batch_x,batch_y) in enumerate(loader):
# training....
print('Epoch:',epoch,'| step:',step,'| batch x:',batch_x.numpy(),
'| batch y:',batch_y.numpy()
'''
|
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_28057379/article/details/115427052