序列化是将对象的状态信息转换为可以存储或传输的形式的过程。在序列化期间,对象将其当前状态(存在内存中)写入到临时或持久性存储区(硬盘)。以后,可以通过从存储区中读取或反序列化对象的状态,重新创建该对象。
实现对象的序列化和反序列化在python中有两种方式:json 和 pickle。
其中json用于字符串 和 python数据类型间进行转换,pickle用于python特有的类型 和 python的数据类型间进行转换,pickle是python特有的。
1、JSON序列化:json.dumps()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
info = {
"name" : "tj" ,
"age" : 22
}
import json
print (info)
print ( type (info))
print (json.dumps(info))
print ( type (json.dumps(info)))
f = open ( "test.txt" , "w" )
# f.write(info) # TypeError: write() argument must be str, not dict
f.write(json.dumps(info)) # 正常写入文件 f.write(json.dumps(info)) 等价于 json.dump(info, f)
f.close()
>>>
{ 'name' : 'tj' , 'age' : 22 }
< class 'dict' >
{ "name" : "tj" , "age" : 22 }
< class 'str' >
|
2、JSON反序列化:json.loads()
1
2
3
4
5
6
7
8
|
f = open ( "test.txt" , "r" )
# print(f.read()["age"]) #TypeError: string indices must be integers
data = json.loads(f.read()) # data = json.loads(f.read()) 等价于 data = json.load(f)
print (data[ "age" ])
f.close()
>>>
22
|
注意:对于以下这种情况json就不能处理了
1
2
3
4
5
6
7
8
9
10
11
|
import json
def hello(name):
print ( "hello," ,name)
info = {
"name" : "tj" ,
"age" : 22 ,
"func" :hello
}
f = open ( "test2.txt" , "w" )
f.write(json.dumps(info)) #TypeError: Object of type function is not JSON serializable
f.close()
|
所以:json用于字符串 和 python数据类型间进行转换
3、pickle序列化:pickle.dumps()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
import pickle
def hello(name):
print ( "hello," ,name)
info = {
"name" : "tj" ,
"age" : 22 ,
"func" :hello
}
print (pickle.dumps(info)) #可见pickle序列化的结果输出为二进制,所以应使用wb的方式往文件中写
f = open ( "test2.txt" , "wb" )
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
f.close()
>>>
b '\x80\x04\x957\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x04alex\x94\x8c\x03age\x94K\x16\x8c\x04func\x94\x8c\x08__main__\x94\x8c\x05hello\x94\x93\x94u.'
|
对于函数hello,序列化的不是内存地址,而是整个数据对象,函数可以序列化。
4、pickle反序列化:pickle.loads()
1
2
3
4
5
6
7
8
9
10
|
f = open ( "test2.txt" , "rb" )
data = pickle.loads(f.read()) # 等价于data = pickle.load(f)
print (data)
print (data[ "name" ])
print (data[ "func" ])
>>>
{ 'name' : 'tj' , 'age' : 22 , 'func' : <function hello at 0x00000179EF69C040 >}
tj
<function hello at 0x00000179EF69C040 >
|
5、多次序列化与反序列化
1)json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
import json
info = {
"name" : "tj" ,
"age" : 22
}
f = open ( "test3.txt" , "w" )
f.write(json.dumps(info))
info[ 'age' ] = 21
f.write(json.dumps(info))
f.close()
#
>>>
序列化两次后test3中的内容
test3.txt: { "name" : "tj" , "age" : 22 }{ "name" : "tj" , "age" : 21 }
f = open ( "test3.txt" , "r" )
# 报错,py3以上,多次dumps的文件反序列化报错,py2多次dumps的文件也能被反序列化,先序列化的先被反序列化
data = json.loads(f.read()) # json.decoder.JSONDecodeError
f.close()
print (data)
|
2)pickle
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
import pickle
info = {
"name" : "tj" ,
"age" : 22
}
f = open ( "test2.txt" , "wb" )
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
info[ "sex" ] = "女"
f.write(pickle.dumps(info)) # 等价于 pickle.dump(info,f)
f.close()
>>>
序列化两次后test2.txt中的内容
test2.txt: �� }�(�name攲tj攲age擪u.�� % }�(�name攲tj攲age擪�sex攲濂硵u.
f = open ( "test2.txt" , "rb" )
data = pickle.loads(f.read()) # 第一次反序列化正常
# data = pickle.loads(f.read()) # 第二次反序列化:EOFError: Ran out of input
print (data)
print (data[ "age" ])
# print(data["sex"]) # KeyError: 'sex'
|
老王:是不是就不能多次序列化呢?那我修改后的数据还需要序列化写入到文件怎么办?
你:当然能多次序列化,把序列化后数据写到多个文件不就好了嘛。
以上就是浅析Python 序列化与反序列化的详细内容,更多关于Python 序列化与反序列化的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/sunnytomorrow/p/13089970.html