[原] KVM 环境下MySQL性能对比

时间:2022-09-16 18:49:49

KVM 环境下MySQL性能对比

标签(空格分隔): Cloud2.0


测试目的

对比MySQL在物理机和KVM环境下性能情况

压测标准

压测遵循单一变量原则,所有的对比都是只改变一个变量的前提下完成

测试方式

以物理机MySQL为基准,分别做两次测试

  1. 测试IO相关参数(writethrough, innodb flush method)
  2. 测试CPU相关参数(NUMA Balancing)

测试环境

CPU:Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz X 24
MEM:48G
Disk:SSD 1.3T
System:Ubuntu 14.04.4 LTS
Kernel:3.16.0-30-generic
MySQL:mysql-5.5.31-linux2.6-x86_64
Sysbench:0.4.12
KVM:QEMU emulator version 2.0.0 (Debian 2.0.0+dfsg-2ubuntu1.22)

测试变量

因相关资料说明,writethrough IO模式能够保障数据一致性,所以在MySQL环境下,默认只测试writethrough环境

以打开NUMA Balancing的物理机环境为基准,测试KVM环境如下变量:

  1. writethrough cache模式下的 innodb io (O_DIRECT, O_SYNC)
  2. KVM 宿主机 NUMA Balancing 对MySQL性能影响

测试软件环境

配置模板如下(只列举关键参数)

# The MySQL server
[mysqld]
default-storage-engine = innodb # MyISAM setup
key_buffer_size = 128M
myisam_sort_buffer_size = 64M ## gloabl config
max_allowed_packet = 16M
max_heap_table_size = 64M
tmp_table_size = 8M
max_connections = 4000
open_files_limit = 6000
table_open_cache = 512
read_buffer_size = 2M
read_rnd_buffer_size = 4M
join_buffer_size = 256K
sort_buffer_size = 2M
thread_cache_size = 8
query_cache_size = 0
thread_concurrency = 16 # Replication Master setup
log-bin = mysql-bin
relay-log = mysqld-relay-bin
max_binlog_size = 100M
binlog_format = row
binlog_cache_size=32K
thread_stack=262144
auto_increment_increment = 3
auto_increment_offset = 1 # Logging
slow_query_log = 1
long_query_time = 2 # InnoDB setup
innodb_file_format = Barracuda
innodb_file_per_table
innodb_buffer_pool_size = 4096M
innodb_log_file_size = 16M
innodb_log_buffer_size = 40M
innodb_flush_log_at_trx_commit = 2
innodb_lock_wait_timeout = 50
innodb_log_files_in_group=2
innodb_io_capacity=2000 [mysqldump]
quick
extended-insert = false
default-character-set = utf8
max_allowed_packet = 16M [mysql]
no-auto-rehash [myisamchk]
key_buffer_size = 8M
sort_buffer_size = 8M
read_buffer = 2M
write_buffer = 2M [mysqlhotcopy]
interactive-timeout

KVM-qemu 配置如下:

<domain type='kvm'>
<name>mysql1</name>
<memory unit='MiB'>5120</memory>
<currentMemory unit='MiB'>5120</currentMemory>
<vcpu placement='static'>4</vcpu>
<os>
<type>hvm</type>
<boot dev='hd' />
</os>
<features>
<acpi />
<apic />
<pae />
</features>
<clock offset='utc' />
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/kvm-spice</emulator>
<disk type='file' device='disk'>
<driver name='qemu' type='qcow2' />
<source file='/data2/kvm/image1/mysql.qcow2' />
<target dev='vda' bus='virtio' />
</disk>
<disk type='file' device='disk'>
<driver name='qemu' type='qcow2' cache='writethrough'/>
<source file='/data2/kvm/image1/data.qcow2' />
<target dev='vdb' bus='virtio' />
</disk>
<interface type='network'>
<source network='default1' />
<model type='virtio' />
</interface>
<console type='pty'>
<target port='0' />
</console>
<graphics type='vnc' autoport='yes' sharePolicy='allow-exclusive' keymap='en-us'>
<listen type='address' address='0.0.0.0' />
</graphics>
</devices>
</domain>

测试基准

测试以物理机的MySQL实例作为参照

物理机MySQL默认情况下,使用4G+4Core,关闭NUMA Balancing

基准数据

Innodb_flush_method = O_DIRECT

OLTP test statistics:
queries performed:
read: 14000028
write: 5000010
other: 2000004
total: 21000042
transactions: 1000002 (1375.45 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 19000038 (26133.48 per sec.)
other operations: 2000004 (2750.89 per sec.) Test execution summary:
total time: 727.0382s
total number of events: 1000002
total time taken by event execution: 17443.5464
per-request statistics:
min: 1.78ms
avg: 17.44ms
max: 1048.03ms
approx. 95 percentile: 32.64ms Threads fairness:
events (avg/stddev): 41666.7500/646.28
execution time (avg/stddev): 726.8144/0.00

关闭 Innodb_flush_method = O_DIRECT, 使用默认值

OLTP test statistics:
queries performed:
read: 14000028
write: 5000010
other: 2000004
total: 21000042
transactions: 1000002 (1390.26 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 19000038 (26414.92 per sec.)
other operations: 2000004 (2780.52 per sec.) Test execution summary:
total time: 719.2920s
total number of events: 1000002
total time taken by event execution: 17257.6867
per-request statistics:
min: 1.78ms
avg: 17.26ms
max: 1476.86ms
approx. 95 percentile: 32.76ms Threads fairness:
events (avg/stddev): 41666.7500/709.66
execution time (avg/stddev): 719.0703/0.00

基准数据分析

在物理机MySQL实例情况下,innodb_flush_method对MySQL性能有一定影响关系

测试结果

第一次压测,KVM环境下 (单一变量 innodb_flush_method)

单纯虚拟机(kvm)压测, Innodb_flush_method = O_DIRECT

打开 Numa balancing, kvm cache模式改为 writethrough

KVM 配置:
CPU = 4 core
Mem = 5 G
MySQL = 4G
Cache = writethrough
MySQL 配置:
Mem = 4G
Innodb_flush_method = O_DIRECT

Innodb_flush_method = O_DIRECT

sysbench --test=oltp --oltp-table-size=1000000  --mysql-db=test --max-requests=1000000 --num-threads=24 --mysql-host=192.168.100.244 --mysql-user=test run

OLTP test statistics:
queries performed:
read: 14000042
write: 5000015
other: 2000006
total: 21000063
transactions: 1000003 (1041.22 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 19000057 (19783.20 per sec.)
other operations: 2000006 (2082.44 per sec.) Test execution summary:
total time: 960.4138s
total number of events: 1000003
total time taken by event execution: 23044.1587
per-request statistics:
min: 3.43ms
avg: 23.04ms
max: 958.60ms
approx. 95 percentile: 43.71ms Threads fairness:
events (avg/stddev): 41666.7917/865.32
execution time (avg/stddev): 960.1733/0.01

Innodb_flush_method = DEFAULT(O_SYNC)

sysbench 0.4.12:  multi-threaded system evaluation benchmark

OLTP test statistics:
queries performed:
read: 14000042
write: 5000015
other: 2000006
total: 21000063
transactions: 1000003 (1025.90 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 19000057 (19492.01 per sec.)
other operations: 2000006 (2051.79 per sec.) Test execution summary:
total time: 974.7614s
total number of events: 1000003
total time taken by event execution: 23388.1224
per-request statistics:
min: 3.75ms
avg: 23.39ms
max: 1306.42ms
approx. 95 percentile: 44.38ms Threads fairness:
events (avg/stddev): 41666.7917/863.10
execution time (avg/stddev): 974.5051/0.01

第一次压测总结

从压测报告显示,在kvm打开writethrough前提下,O_DIRECT方式,MySQL的效率更高

使用kvm,MySQL性能约为物理机的75%

纵坐标为总执行时间

[原] KVM 环境下MySQL性能对比

IO模式建议优化手段

在宿主机打开writethrough前提下,配置 Innodb_flush_method = O_DIRECT有效提高MySQL性能

约为物理机O_DIRECT模式下性能的97%

第二次压测, KVM环境下 (单一变量 numa balancing)

单纯虚拟机(kvm)压测, 打开 numa balancing

关闭宿主机 Numa balancing, kvm cache模式改为 writethrough

Innodb_flush_method = O_SYNC

OLTP test statistics:
queries performed:
read: 14000014
write: 5000005
other: 2000002
total: 21000021
transactions: 1000001 (1068.76 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 19000019 (20306.35 per sec.)
other operations: 2000002 (2137.51 per sec.) Test execution summary:
total time: 935.6690s
total number of events: 1000001
total time taken by event execution: 22450.9403
per-request statistics:
min: 3.51ms
avg: 22.45ms
max: 1170.10ms
approx. 95 percentile: 41.65ms Threads fairness:
events (avg/stddev): 41666.7083/855.51
execution time (avg/stddev): 935.4558/0.01

Innodb_flush_method = O_DIRECT

OLTP test statistics:
queries performed:
read: 14000042
write: 5000015
other: 2000006
total: 21000063
transactions: 1000003 (1062.79 per sec.)
deadlocks: 0 (0.00 per sec.)
read/write requests: 19000057 (20193.07 per sec.)
other operations: 2000006 (2125.59 per sec.) Test execution summary:
total time: 940.9197s
total number of events: 1000003
total time taken by event execution: 22577.0003
per-request statistics:
min: 3.36ms
avg: 22.58ms
max: 756.58ms
approx. 95 percentile: 41.50ms Threads fairness:
events (avg/stddev): 41666.7917/943.69
execution time (avg/stddev): 940.7083/0.01

第二次压测总结

打开NUMA绑定后,性能下降约3%

[原] KVM 环境下MySQL性能对比

CPU优化建议

关闭NUMA绑定

Q&A

为什么不采用多个实例做高负载压测?

在测试的过程中,利用cgroup可以将实例的CPU全部跑到对应的核,在对应CPU上,负载是满的

[原] KVM 环境下MySQL性能对比

为什么NUMA对性能影响如此之大?

猜测vCPU的多个线程可能位于不同的CPU Nodes, 导致跨node的内存访问,不太清楚vCPU是否会产生这样的调度,但是关闭NUMA是不会导致的。

有没有一张图解释不同kvm cache?

[原] KVM 环境下MySQL性能对比

[原] KVM 环境下MySQL性能对比的更多相关文章

  1. tensorflow在各种环境下搭建与对比

    tensorflow在各种环境下搭建与对比 由于有些训练是要长时间进行训练(几天),才能看出显著的结果,如果只是通过本地的计算机进行训练是不可能的.因此这周花了一些时间调研如何才能让神经网络长时间的进 ...

  2. &lbrack;原&rsqb;生产环境下的nginx&period;conf配置文件&lpar;多虚拟主机&rpar;

    [原]生产环境下的nginx.conf配置文件(多虚拟主机) 2013-12-27阅读110 评论0 我的生产环境下的nginx.conf配置文件,做了虚拟主机设置的,大家可以根据需求更改,下载即可在 ...

  3. windows 环境下mysql 如何修改root密码

    windows 环境下mysql 如何修改root密码 以windows为例: 无法开启服务,将mysql更目录下的data文件夹清空,然后调用 mysqld --initialize 开启mysql ...

  4. win10环境下MySql(5&period;7&period;21版本)安装过程

    windows10上安装mysql(详细步骤) 2016年09月06日 08:09:34 阅读数:60405 环境:windwos 10(1511) 64bit.mysql 5.7.14 时间:201 ...

  5. docker环境下mysql参数修改

    原文:docker环境下mysql参数修改 需要修改log_bin为on,看了好几个博客说都需要删掉容器重新生成,然而并非如此, 我们可以用docker cp 命令将docker的文件"下载 ...

  6. Linux环境下MySql安装和常见问题的解决

    MySql安装 首先当然是要连接上linux服务器咯,然后就是下面的命令甩过去,梭哈,一通运行就是啦   梭哈 下载: sudo wget http://dev.mysql.com/get/mysql ...

  7. Windows环境下Mysql 5&period;7读写分离之使用mysql-proxy练习篇

    本文使用mysql-proxy软件,结合mysql读写分离,实现实战练习. 前期准备: 三台机器: 代理机,IP:192.168.3.33 mysql Master,IP:192.168.3.32 m ...

  8. windowns环境下mysql 安装教程

    windowns环境下mysql 安装教程 一:这里以绿色版安装为例(解压就可以使用) 下载地址: 下载页面:https://dev.mysql.com/downloads/mysql/  2:点击 ...

  9. 【Data Cluster】真机环境下MySQL数据库集群搭建

    真机环境下MySQL-Cluster搭建文档  摘要:本年伊始阶段,由于实验室对不同数据库性能测试需求,才出现MySQL集群搭建.购置主机,交换机,双绞线等一系列准备工作就绪,也就开始集群搭建.起初笔 ...

随机推荐

  1. &lbrack;转&rsqb;Writing Custom Middleware in ASP&period;NET Core 1&period;0

    本文转自:https://www.exceptionnotfound.net/writing-custom-middleware-in-asp-net-core-1-0/ One of the new ...

  2. Step deep into GLSL

    1 Lighting computation is handled in eye space(需要根据眼睛的位置来计算镜面发射值有多少进入眼睛), hence, when using GLSL (GP ...

  3. Looper Handler 多线程

    Looper is created by default on main UI    Property:        // main ui thread, if Looper is initiali ...

  4. COJ 0538 购物问题

    购物问题 难度级别:C: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 由于换季,ACM商场推出优惠活动,以超低价格出售若干种商品.但是,商场 ...

  5. Redis数据类型之列表List

    Redis列表简介 Redis列表是简单的字符串列表,一个列表最多可以包含 232 - 1 个元素.列表按照插入顺序排序,可以从列表的头部或者尾部添加元素 上图演示了使用LPUSH向列表中插入元素,并 ...

  6. php &dollar;&lowbar;SERVER&lbrack;&&num;39&semi;HTTP&lowbar;USER&lowbar;AGENT&&num;39&semi;&rsqb; 用法介绍

    在PHP中HTTP_USER_AGENT是用来获取用户的相关信息的,包括用户使用的浏览器,操作系统等信息, 显示结果为: Mozilla/5.0 (Windows NT 6.1; WOW64) App ...

  7. LSTM&lpar;Long Short Term Memory&rpar;

    长时依赖是这样的一个问题,当预测点与依赖的相关信息距离比较远的时候,就难以学到该相关信息.例如在句子”我出生在法国,……,我会说法语“中,若要预测末尾”法语“,我们需要用到上下文”法国“.理论上,递归 ...

  8. SpringBoot系列&colon; 使用MyBatis maven插件自动生成java代码

    ====================================pom.xml 文件====================================需要在 pom.xml 文件增加 m ...

  9. 压缩跟踪Compressive Tracking(转)

    这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://b ...

  10. uri&period;js的用法事例

    来源于:http://smoothprogramming.com/tutorials/get-set-query-string-values-from-url-using-uri-js/ Get or ...