思路: 其实求解很简单直接说解法,移动K个后 上下的角动量最小,能肯定是相连的(n-k)个,至于为什么 你自己好好想想(easy);
对于一些等质量的质点中心在 所在位置和除以点的个数
average=sum[l,l+(n-k)-1]/(n-k);
一个点的值: (pi-average)* (pi-average)
也就是 pi^2+avery^2 - 2*pi*average
多个点相加也就是 ∑pi^2+(n-k)*sum*sum/(n-k)/(n-k) - 2*∑pi*sum/(n-k);
= ∑pi^2+(n-k)*sum*sum/(n-k)/(n-k) - 2*sum*sum/(n-k);
= ∑pi^2 - sum*sum/(n-k);
所以要处理一下 ”普通和“,“平方和” 就好了
但是这个卡精度:我的做法 每次比较 (n-k)*∑pi^2 - sum*sum
剩下最小的 再除以(n-k) 就好了
代码.cpp
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <map>
#include <set>
#include <cstring>
using namespace std;
typedef long long LL;
LL p[50005];
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,k;
scanf("%d%d",&n,&k);
for(int i = 1; i<=n; i++)scanf("%I64d",p+i);
if(n==k||k==n-1)
{
printf("%d\n",0);
continue;
}
sort(p+1,p+n+1);
LL sum = 0;
LL SUM = 0;
for(int i = 1; i<=n-k; i++)
{
sum += p[i];
SUM += p[i] * p[i];
}
LL need=n-k;
LL min_ans = need*SUM - sum*sum;
for(int i = n-k+1,j=1; i <= n; i++,j++)
{
sum = sum + p[i] - p[j];
SUM = SUM + p[i]*p[i] - p[j]*p[j];
LL now = need*SUM - sum*sum;
min_ans=min(min_ans,now);
}
//LL tmp=min_ans/need;
// double t=min_ans%need;
// double ans=tmp+t/(double)need;
printf("%.11f\n",(double)min_ans/(double)need);
}
return 0;
}