一、原理分析
Mapreduce的处理过程,由于Mapreduce会在Map~reduce中,将重复的Key合并在一起,所以Mapreduce很容易就去除重复的行。Map无须做任何处理,设置Map中写入context的东西为不作任何处理的行,也就是Map中最初处理的value即可,而Reduce同样无须做任何处理,写入输出文件的东西就是,最初得到的Key。
我原来以为是map阶段用了hashmap,根据hash值的唯一性。估计应该不是...
Map是输入文件有几行,就运行几次。
二、代码
2.1 Mapper
package algorithm; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class DuplicateRemoveMapper extends
Mapper<LongWritable, Text, Text, Text> {
//输入文件是数字 不过可能也有字符等 所以用Text,不用LongWritable
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
context.write(value, new Text());//后面不能是null,否则,空指针 } }
2.2 Reducer
package algorithm; import java.io.IOException; import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class DuplicateRemoveReducer extends Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterable<Text> value, Context context)
throws IOException, InterruptedException {
// process values
context.write(key, null); //可以出处null
} }
2.3 Main
package algorithm; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class DuplicateMainMR { public static void main(String[] args) throws Exception{
// TODO Auto-generated method stub
Configuration conf = new Configuration();
Job job = new Job(conf,"DuplicateRemove");
job.setJarByClass(DuplicateMainMR.class);
job.setMapperClass(DuplicateRemoveMapper.class);
job.setReducerClass(DuplicateRemoveReducer.class);
job.setOutputKeyClass(Text.class);
//输出是null,不过不能随意写 否则包类型不匹配
job.setOutputValueClass(Text.class); job.setNumReduceTasks(1);
//hdfs上写错了文件名 DupblicateRemove 多了个b
//hdfs不支持修改操作
FileInputFormat.addInputPath(job, new Path("hdfs://192.168.58.180:8020/ClassicalTest/DupblicateRemove/DuplicateRemove.txt"));
FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.58.180:8020/ClassicalTest/DuplicateRemove/DuplicateRemoveOut"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }
三、输出分析
3.1 输入与输出
没啥要对比的....不贴了
3.2 控制台
doop.mapreduce.Job.updateStatus(Job.java:323)
INFO - Job job_local4032991_0001 completed successfully
DEBUG - PrivilegedAction as:hxsyl (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.getCounters(Job.java:765)
INFO - Counters: 38
File System Counters
FILE: Number of bytes read=560
FILE: Number of bytes written=501592
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=48
HDFS: Number of bytes written=14
HDFS: Number of read operations=13
HDFS: Number of large read operations=0
HDFS: Number of write operations=4
Map-Reduce Framework
Map input records=8
Map output records=8
Map output bytes=26
Map output materialized bytes=48
Input split bytes=142
Combine input records=0
Combine output records=0
Reduce input groups=6
Reduce shuffle bytes=48
Reduce input records=8
Reduce output records=6
Spilled Records=16
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=4
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=457179136
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=24
File Output Format Counters
Bytes Written=14
DEBUG - PrivilegedAction as:hxsyl (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:323)
DEBUG - stopping client from cache: org.apache.hadoop.ipc.Client@37afeb11
DEBUG - removing client from cache: org.apache.hadoop.ipc.Client@37afeb11
DEBUG - stopping actual client because no more references remain: org.apache.hadoop.ipc.Client@37afeb11
DEBUG - Stopping client
DEBUG - IPC Client (521081105) connection to /192.168.58.180:8020 from hxsyl: closed
DEBUG - IPC Client (521081105) connection to /192.168.58.180:8020 from hxsyl: stopped, remaining connections 0
MapReduce实现数据去重的更多相关文章
-
MapReduce实例(数据去重)
数据去重: 原理(理解):Mapreduce程序首先应该确认<k3,v3>,根据<k3,v3>确定<k2,v2>,原始数据中出现次数超过一次的数据在输出文件中只出现 ...
-
利用MapReduce实现数据去重
数据去重主要是为了利用并行化的思想对数据进行有意义的筛选. 统计大数据集上的数据种类个数.从网站日志中计算访问地等这些看似庞杂的任务都会涉及数据去重. 示例文件内容: 此处应有示例文件 设计思路 数据 ...
-
hadoop mapreduce实现数据去重
实现原理分析: map函数数将输入的文本按照行读取, 并将Key--每一行的内容 输出 value--空. reduce 会自动统计所有的key,我们让reduce输出key-> ...
-
[Hadoop]-从数据去重认识MapReduce
这学期刚好开了一门大数据的课,就是完完全全简简单单的介绍的那种,然后就接触到这里面最被人熟知的Hadoop了.看了官网的教程[吐槽一下,果然英语还是很重要!],嗯啊,一知半解地搭建了本地和伪分布式的, ...
-
hadoop —— MapReduce例子 (数据去重)
参考:http://eric-gcm.iteye.com/blog/1807468 例子1: 概要:数据去重 描述:将file1.txt.file2.txt中的数据合并到一个文件中的同时去掉重复的内容 ...
-
map/reduce实现数据去重
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.co ...
-
Hadoop 数据去重
数据去重这个实例主要是为了读者掌握并利用并行化思想对数据进行有意义的筛选.统计大数据集上的数据种类个数.从网站日志中计算访问等这些看似庞杂的任务都会涉及数据去重.下面就进入这个实例的MapReduce ...
-
MapReduce的数据流程、执行流程
MapReduce的数据流程: 预先加载本地的输入文件 经过MAP处理产生中间结果 经过shuffle程序将相同key的中间结果分发到同一节点上处理 Recude处理产生结果输出 将结果输出保存在hd ...
-
MYSQL数据去重与外表填充
经常要对数据库中的数据进行去重,有时还需要使用外部表填冲数据,本文档记录数据去重与外表填充数据. date:2016/8/17 author:wangxl 1 需求 对user_info1表去重,并添 ...
随机推荐
-
mysql 5.6到percona 5.6小版本升级
假设原来是mysql 5.6.19社区版,现在要升级到percona server 5.6.30. 对于大的数据库来说,采用mysqldump方式进行迁移太花费时间了,可采用新安装加载原来数据库的方式 ...
-
centos linux安全和调优 第四十一节课
centos linux安全和调优 第四十一节课 上半节课 Linux安全 下半节课 Linux调优 2015-07-01linux安全和调优 [复制链接]--http://www.apele ...
-
iOS 导航控制器如何随意push和pop 想要在 A push B 后, B 在push 到 D ,然后从 D pop 到 C ,在从 C pop 的A
这里主要是对导航控制器的viewControllerss这个数组进行操作,因为push操作和pop操作都是根据这个数据去切换控制器或者在这个数组里增加控制器的,所以只要改变这个子控制器数据就能自定义切 ...
-
SetBkMode可设置文字背景色:TRANSPARENT或OPAQUE
感受一下区别: procedure TForm1.Timer2Timer(Sender: TObject); var cvs: TCanvas; Rect: TRect; Str: string; b ...
-
Linux环境快速搭建RocketMQ双Master模式
RocketMQ的集群部署方式有多种,其中包括单个Master.多个Master.多Master多Slave模式(异步复制)以及多Master多Slave模式(同步双写).本次以多Master集群模式 ...
-
java jdk动态代理模式举例浅析
代理模式概述 代理模式是为了提供额外或不同的操作,而插入的用来替代”实际”对象的对象,这些操作涉及到与”实际”对象的通信,因此代理通常充当中间人角色. java中常用的动态代理模式为jdk动态代理和c ...
-
day 10函数二
今日内容 '''实参:调用函数,在括号内传入的实际值,值可以为常量.变量.表达式或三者的组合*****形参:定义函数,在括号内声明的变量名,用来接受外界传来的值''''''注:形参随着函数的调用 ...
-
Android Studio旧版(内含SDK)安装和环境变量配置 转自I-T枭
win10下Android Studio和SDK下载.安装和环境变量配置 ------made by siwuxie095 转自I-T枭https://me.csdn.net/hahahhahahah ...
-
SpringCloud注册中心(Eureka)
注册中心的作用就是用来方便接口暴露出来的一个管理工具,如果所有的接口只是暴露出来,没有一个同一的管理工具,又有谁知道你暴露了哪些接口了,Eureka是一个springcloud的服务注册和发现模块 搭 ...
-
【Spring Security】四、自定义页面
在前面例子中,登陆页面都是用的Spring Security自己提供的,这明显不符合实际开发场景,同时也没有退出和注销按钮,因此在每次测试的时候都要通过关闭浏览器来注销达到清除session的效果. ...