Nand

时间:2023-11-26 10:21:08

1.boolean logic

常用的boolean logic有AND OR NOT,其性质如下

Nand

事实上,可用AND和NOT来表示OR

x or y = NOT(NOT(x) AND NOT(y))

但没法只用AND或NOT,于是出来了NAND,x NAND y = NOT(x AND y),其真值表如下

Nand

于是可以用NAND表示AND和NOT

NOT(x) = x NAND x

x AND y = NOT(x NAND y)

2. HDL逻辑门接口

Nand

3.HDL实现

1)Mux4Way16

/**
* 4-way 16-bit multiplexor:
* out = a if sel == 00
* b if sel == 01
* c if sel == 10
* d if sel == 11
*/

自己做的时候超级傻逼。我就想啊,首先用 And(a = sel[0],b = sel[1],out = outd);这样就能通过outd是否为1判断是否选择d,然后把16个元素依次通过And(a = d[0],b = outd,out = out4[0])得到4个长度为16的输出,再把他们相加就得到了最后的输出,超级麻烦超级傻逼。

然后偷偷瞄了下答案,真是哭了,充分利用二进制的结构特性,先看sel[0]来决定用a还是b 或者 c还是d 得到两个备选,再看sel[1]来决定用最后输出,就两行,真是惊呆...

CHIP Mux4Way16 {
    ], b[], c[], d[], sel[];
    ];

    PARTS:
    // Put your code here:
    Mux16(a = a,b = b,sel = sel[],out = out1);
    Mux16(a = c,b = d,sel = sel[],out = out2);
    Mux16(a = out1,b = out2,sel = sel[],out = out);
}

2)DMux4Way

哈哈这个题做得好搞,完全不动脑型,把Mux的思路逆着来就行

CHIP DMux4Way {
    ];
    OUT a, b, c, d;

    PARTS:
    // Put your code here:
    DMux(],a = out1,b = out2);
    DMux(],a = a,b = b);
    DMux(],a = c,b = d);
}