本文主要讲如何不依赖tenserflow等高级api实现一个简单的神经网络来做分类,所有的代码都在下面;在构造的数据(通过程序构造)上做了验证,经过1个小时的训练分类的准确率可以达到97%。
完整的结构化代码见于:链接地址
先来说说原理
网络构造
上面是一个简单的三层网络;输入层包含节点x1 , x2;隐层包含h1,h2;输出层包含o1。
输入节点的数量要等于输入数据的变量数目。
隐层节点的数量通过经验来确定。
如果只是做分类,输出层一般一个节点就够了。
从输入到输出的过程
1.输入节点的输出等于输入,x1节点输入x1时,输出还是x1.
2. 隐层和输出层的输入i为上层输出的加权求和再加偏置,输出为f(i) , f为激活函数,可以取sigmoid。h1的输出为 sigmoid(w1x1 + w2x2 + b)
误差反向传播的过程
python实现
构造测试数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
# -*- coding: utf-8 -*-
import numpy as np
from random import random as rdn
'''
说明:我们构造1000条数据,每条数据有三个属性(用a1 , a2 , a3表示)
a1 离散型 取值 1 到 10 , 均匀分布
a2 离散型 取值 1 到 10 , 均匀分布
a3 连续型 取值 1 到 100 , 且符合正态分布
各属性之间独立。
共2个分类(0 , 1),属性值与类别之间的关系如下,
0 : a1 in [1 , 3] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [1 , 3] and a2 in [4 , 10] and a3 > 50
0 : a1 in [1 , 3] and a2 in [1 , 3] and a3 > 30
1 : a1 in [1 , 3] and a2 in [1 , 3] and a3 <= 30
0 : a1 in [4 , 10] and a2 in [4 , 10] and a3 <= 50
1 : a1 in [4 , 10] and a2 in [4 , 10] and a3 > 50
0 : a1 in [4 , 10] and a2 in [1 , 3] and a3 > 30
1 : a1 in [4 , 10] and a2 in [1 , 3] and a3 <= 30
'''
def gendata() :
#为a3生成符合正态分布的数据
a3_data = np.random.randn( 1000 ) * 30 + 50
data = []
for i in range ( 1000 ) :
#生成a1
a1 = int (rdn() * 10 ) + 1
if a1 > 10 :
a1 = 10
#生成a2
a2 = int (rdn() * 10 ) + 1
if a2 > 10 :
a2 = 10
#取a3
a3 = a3_data[i]
#计算这条数据对应的类别
c_id = 0
if a1 < = 3 and a2 > = 4 and a3 < = 50 :
c_id = 0
elif a1 < = 3 and a2 > = 4 and a3 > 50 :
c_id = 1
elif a1 < = 3 and a2 < 4 and a3 > 30 :
c_id = 0
elif a1 < = 3 and a2 < 4 and a3 < = 30 :
c_id = 1
elif a1 > 3 and a2 > = 4 and a3 < = 50 :
c_id = 0
elif a1 > 3 and a2 > = 4 and a3 > 50 :
c_id = 1
elif a1 > 3 and a2 < 4 and a3 > 30 :
c_id = 0
elif a1 > 3 and a2 < 4 and a3 < = 30 :
c_id = 1
else :
print ( 'error' )
#拼合成字串
str_line = str (i) + ',' + str (a1) + ',' + str (a2) + ',' + str (a3) + ',' + str (c_id)
data.append(str_line)
return '\n' .join(data)
|
激活函数
1
2
3
4
5
6
7
8
9
10
11
|
# -*- coding: utf-8 -*-
"""
created on sun dec 2 14:49:31 2018
@author: congpeiqing
"""
import numpy as np
#sigmoid函数的导数为 f(x)*(1-f(x))
def sigmoid(x) :
return 1 / ( 1 + np.exp( - x))
|
网络实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
# -*- coding: utf-8 -*-
"""
created on sun dec 2 14:49:31 2018
@author: congpeiqing
"""
from activation_funcs import sigmoid
from random import random
class inputnode( object ) :
def __init__( self , idx) :
self .idx = idx
self .output = none
def setinput( self , value) :
self .output = value
def getoutput( self ) :
return self .output
def refreshparas( self , p1 , p2) :
pass
class neurode( object ) :
def __init__( self , layer_name , idx , input_nodes , activation_func = none , powers = none , bias = none) :
self .idx = idx
self .layer_name = layer_name
self .input_nodes = input_nodes
if activation_func is not none :
self .activation_func = activation_func
else :
#默认取 sigmoid
self .activation_func = sigmoid
if powers is not none :
self .powers = powers
else :
self .powers = [random() for i in range ( len ( self .input_nodes))]
if bias is not none :
self .bias = bias
else :
self .bias = random()
self .output = none
def getoutput( self ) :
self .output = self .activation_func( sum ( map ( lambda x : x[ 0 ].getoutput() * x[ 1 ] , zip ( self .input_nodes, self .powers))) + self .bias)
return self .output
def refreshparas( self , err , learn_rate) :
err_add = self .output * ( 1 - self .output) * err
for i in range ( len ( self .input_nodes)) :
#调用子节点
self .input_nodes[i].refreshparas( self .powers[i] * err_add , learn_rate)
#调节参数
power_delta = learn_rate * err_add * self .input_nodes[i].output
self .powers[i] + = power_delta
bias_delta = learn_rate * err_add
self .bias + = bias_delta
class simplebp( object ) :
def __init__( self , input_node_num , hidden_layer_node_num , trainning_data , test_data) :
self .input_node_num = input_node_num
self .input_nodes = [inputnode(i) for i in range (input_node_num)]
self .hidden_layer_nodes = [neurode( 'h' , i , self .input_nodes) for i in range (hidden_layer_node_num)]
self .output_node = neurode( 'o' , 0 , self .hidden_layer_nodes)
self .trainning_data = trainning_data
self .test_data = test_data
#逐条训练
def trainbyitem( self ) :
cnt = 0
while true :
cnt + = 1
learn_rate = 1.0 / cnt
sum_diff = 0.0
#对于每一条训练数据进行一次训练过程
for item in self .trainning_data :
for i in range ( self .input_node_num) :
self .input_nodes[i].setinput(item[i])
item_output = item[ - 1 ]
nn_output = self .output_node.getoutput()
#print('nn_output:' , nn_output)
diff = (item_output - nn_output)
sum_diff + = abs (diff)
self .output_node.refreshparas(diff , learn_rate)
#print('refreshedparas')
#结束条件
print ( round (sum_diff / len ( self .trainning_data) , 4 ))
if sum_diff / len ( self .trainning_data) < 0.1 :
break
def getaccuracy( self ) :
cnt = 0
for item in self .test_data :
for i in range ( self .input_node_num) :
self .input_nodes[i].setinput(item[i])
item_output = item[ - 1 ]
nn_output = self .output_node.getoutput()
if (nn_output > 0.5 and item_output > 0.5 ) or (nn_output < 0.5 and item_output < 0.5 ) :
cnt + = 1
return cnt / ( len ( self .test_data) + 0.0 )
|
主调流程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
# -*- coding: utf-8 -*-
"""
created on sun dec 2 14:49:31 2018
@author: congpeiqing
"""
import os
from simplebp import simplebp
from gendata import gendata
if not os.path.exists( 'data' ):
os.makedirs( 'data' )
#构造训练和测试数据
data_file = open ( 'data/trainning_data.dat' , 'w' )
data_file.write(gendata())
data_file.close()
data_file = open ( 'data/test_data.dat' , 'w' )
data_file.write(gendata())
data_file.close()
#文件格式:rec_id,attr1_value,attr2_value,attr3_value,class_id
#读取和解析训练数据
trainning_data_file = open ( 'data/trainning_data.dat' )
trainning_data = []
for line in trainning_data_file :
line = line.strip()
fld_list = line.split( ',' )
trainning_data.append( tuple ([ float (field) for field in fld_list[ 1 :]]))
trainning_data_file.close()
#读取和解析测试数据
test_data_file = open ( 'data/test_data.dat' )
test_data = []
for line in test_data_file :
line = line.strip()
fld_list = line.split( ',' )
test_data.append( tuple ([ float (field) for field in fld_list[ 1 :]]))
test_data_file.close()
#构造一个二分类网络 输入节点3个,隐层节点10个,输出节点一个
simple_bp = simplebp( 3 , 10 , trainning_data , test_data)
#训练网络
simple_bp.trainbyitem()
#测试分类准确率
print ( 'accuracy : ' , simple_bp.getaccuracy())
#训练时长比较长,准确率可以达到97%
|
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/conggova/article/details/77799464