简介
卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的。
卷积神经网络CNN的结构一般包含这几个层:
- 输入层:用于数据的输入
- 卷积层:使用卷积核进行特征提取和特征映射
- 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射
- 池化层:进行下采样,对特征图稀疏处理,减少数据运算量。
- 全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失
- 输出层:用于输出结果
PyTorch实战
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# Training settings
batch_size = 64
# MNIST Dataset
train_dataset = datasets.MNIST(root = './data/' ,
train = True ,
transform = transforms.ToTensor(),
download = True )
test_dataset = datasets.MNIST(root = './data/' ,
train = False ,
transform = transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
batch_size = batch_size,
shuffle = True )
test_loader = torch.utils.data.DataLoader(dataset = test_dataset,
batch_size = batch_size,
shuffle = False )
class Net(nn.Module):
def __init__( self ):
super (Net, self ).__init__()
# 输入1通道,输出10通道,kernel 5*5
self .conv1 = nn.Conv2d( 1 , 10 , kernel_size = 5 )
self .conv2 = nn.Conv2d( 10 , 20 , kernel_size = 5 )
self .mp = nn.MaxPool2d( 2 )
# fully connect
self .fc = nn.Linear( 320 , 10 )
def forward( self , x):
# in_size = 64
in_size = x.size( 0 ) # one batch
# x: 64*10*12*12
x = F.relu( self .mp( self .conv1(x)))
# x: 64*20*4*4
x = F.relu( self .mp( self .conv2(x)))
# x: 64*320
x = x.view(in_size, - 1 ) # flatten the tensor
# x: 64*10
x = self .fc(x)
return F.log_softmax(x)
model = Net()
optimizer = optim.SGD(model.parameters(), lr = 0.01 , momentum = 0.5 )
def train(epoch):
for batch_idx, (data, target) in enumerate (train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 200 = = 0 :
print ( 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}' . format (
epoch, batch_idx * len (data), len (train_loader.dataset),
100. * batch_idx / len (train_loader), loss.data[ 0 ]))
def test():
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile = True ), Variable(target)
output = model(data)
# sum up batch loss
test_loss + = F.nll_loss(output, target, size_average = False ).data[ 0 ]
# get the index of the max log-probability
pred = output.data. max ( 1 , keepdim = True )[ 1 ]
correct + = pred.eq(target.data.view_as(pred)).cpu(). sum ()
test_loss / = len (test_loader.dataset)
print ( '\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n' . format (
test_loss, correct, len (test_loader.dataset),
100. * correct / len (test_loader.dataset)))
for epoch in range ( 1 , 10 ):
train(epoch)
test()
|
输出结果:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.315724
Train Epoch: 1 [12800/60000 (21%)] Loss: 1.931551
Train Epoch: 1 [25600/60000 (43%)] Loss: 0.733935
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.165043
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.235188Test set: Average loss: 0.1935, Accuracy: 9421/10000 (94%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.333513
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.163156
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.213840
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.141114
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.128191Test set: Average loss: 0.1180, Accuracy: 9645/10000 (96%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.206469
Train Epoch: 3 [12800/60000 (21%)] Loss: 0.234443
Train Epoch: 3 [25600/60000 (43%)] Loss: 0.061048
Train Epoch: 3 [38400/60000 (64%)] Loss: 0.192217
Train Epoch: 3 [51200/60000 (85%)] Loss: 0.089190Test set: Average loss: 0.0938, Accuracy: 9723/10000 (97%)
Train Epoch: 4 [0/60000 (0%)] Loss: 0.086325
Train Epoch: 4 [12800/60000 (21%)] Loss: 0.117741
Train Epoch: 4 [25600/60000 (43%)] Loss: 0.188178
Train Epoch: 4 [38400/60000 (64%)] Loss: 0.049807
Train Epoch: 4 [51200/60000 (85%)] Loss: 0.174097Test set: Average loss: 0.0743, Accuracy: 9767/10000 (98%)
Train Epoch: 5 [0/60000 (0%)] Loss: 0.063171
Train Epoch: 5 [12800/60000 (21%)] Loss: 0.061265
Train Epoch: 5 [25600/60000 (43%)] Loss: 0.103549
Train Epoch: 5 [38400/60000 (64%)] Loss: 0.019137
Train Epoch: 5 [51200/60000 (85%)] Loss: 0.067103Test set: Average loss: 0.0720, Accuracy: 9781/10000 (98%)
Train Epoch: 6 [0/60000 (0%)] Loss: 0.069251
Train Epoch: 6 [12800/60000 (21%)] Loss: 0.075502
Train Epoch: 6 [25600/60000 (43%)] Loss: 0.052337
Train Epoch: 6 [38400/60000 (64%)] Loss: 0.015375
Train Epoch: 6 [51200/60000 (85%)] Loss: 0.028996Test set: Average loss: 0.0694, Accuracy: 9783/10000 (98%)
Train Epoch: 7 [0/60000 (0%)] Loss: 0.171613
Train Epoch: 7 [12800/60000 (21%)] Loss: 0.078520
Train Epoch: 7 [25600/60000 (43%)] Loss: 0.149186
Train Epoch: 7 [38400/60000 (64%)] Loss: 0.026692
Train Epoch: 7 [51200/60000 (85%)] Loss: 0.108824Test set: Average loss: 0.0672, Accuracy: 9793/10000 (98%)
Train Epoch: 8 [0/60000 (0%)] Loss: 0.029188
Train Epoch: 8 [12800/60000 (21%)] Loss: 0.031202
Train Epoch: 8 [25600/60000 (43%)] Loss: 0.194858
Train Epoch: 8 [38400/60000 (64%)] Loss: 0.051497
Train Epoch: 8 [51200/60000 (85%)] Loss: 0.024832Test set: Average loss: 0.0535, Accuracy: 9837/10000 (98%)
Train Epoch: 9 [0/60000 (0%)] Loss: 0.026706
Train Epoch: 9 [12800/60000 (21%)] Loss: 0.057807
Train Epoch: 9 [25600/60000 (43%)] Loss: 0.065225
Train Epoch: 9 [38400/60000 (64%)] Loss: 0.037004
Train Epoch: 9 [51200/60000 (85%)] Loss: 0.057822Test set: Average loss: 0.0538, Accuracy: 9829/10000 (98%)
Process finished with exit code 0
参考:https://github.com/hunkim/PyTorchZeroToAll
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/m0_37306360/article/details/79311501