Bezier曲线的原理 及 二次Bezier曲线的实现

时间:2022-09-14 22:30:17

原文地址:http://blog.csdn.net/jimi36/article/details/7792103

Bezier曲线的原理

Bezier曲线是应用于二维图形的曲线。曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状。

一次Bezier曲线公式:

Bezier曲线的原理 及 二次Bezier曲线的实现

Bezier曲线的原理 及 二次Bezier曲线的实现

一次Bezier曲线是由P0至P1的连续点,描述的一条线段

二次Bezier曲线公式:

Bezier曲线的原理 及 二次Bezier曲线的实现

Bezier曲线的原理 及 二次Bezier曲线的实现

二次Bezier曲线是 P0至P1 的连续点Q0和P1至P2 的连续点Q1 组成的线段上的连续点B(t),描述一条抛物线。

三次Bezier曲线公式:

Bezier曲线的原理 及 二次Bezier曲线的实现

Bezier曲线的原理 及 二次Bezier曲线的实现

二次Bezier曲线的实现

  1. #ifndef CBEZIERCURVE_H_
  2. #define CBEZIERCURVE_H_
  3. #include <vector>
  4. class CBezierCurve
  5. {
  6. public:
  7. CBezierCurve();
  8. ~CBezierCurve();
  9. void SetCtrlPoint(POINT& stPt);
  10. bool CreateCurve();
  11. void Draw(CDC* pDC);
  12. private:
  13. // 主要算法,计算曲线各个点坐标
  14. void CalCurvePoint(float t, POINT& stPt);
  15. private:
  16. // 顶点和控制点数组
  17. std::vector<POINT> m_vecCtrlPt;
  18. // 曲线上各点坐标数组
  19. std::vector<POINT> m_vecCurvePt;
  20. };
  21. #endif
[html] view
plain
copy
  1. #include <math.h>
  2. #include "BezierCurve.h"
  3. CBezierCurve::CBezierCurve()
  4. {
  5. }
  6. CBezierCurve::~CBezierCurve()
  7. {
  8. }
  9. void CBezierCurve::SetCtrlPoint(POINT& stPt)
  10. {
  11. m_vecCtrlPt.push_back(stPt);
  12. }
  13. void CBezierCurve::CreateCurve()
  14. {
  15. // 确保是二次曲线,2个顶点一个控制点
  16. assert(m_vecCtrlPt.size() == 3);
  17. // t的增量, 可以通过setp大小确定需要保存的曲线上点的个数
  18. float step = 0.01;
  19. for (float t = 0.0; t <= 1.0; t += step)
  20. {
  21. POINT stPt;
  22. CalCurvePoint(t, stPt);
  23. m_vecCurvePt.push_back(stPt);
  24. }
  25. }
  26. void CBezierCurve::Draw(CDC* pDC)
  27. {
  28. // 画出曲线上个点,若不连续可以用直线连接各点
  29. int nCount = m_vecCurvePt.size();
  30. for (int i = 0; i < nCount; ++i)
  31. {
  32. pDC->SetPixel(m_vecCurvePt[i], 0x000000);
  33. }
  34. }
  35. void CBezierCurve::CalCurvePoint(float t, POINT& stPt)
  36. {
  37. // 确保是二次曲线,2个顶点一个控制点
  38. assert(m_vecCtrlPt.size() == 3);
  39. // 计算曲线点坐标,此为2次算法,改变此处可以实现多次曲线
  40. float x = (float)m_vecCtrlPt[0].x * pow(1 - t, 2)   +
  41. (float)m_vecCtrlPt[1].x * t * (1 - t) * 2 +
  42. (float)m_vecCtrlPt[2].x * pow(t, 2);
  43. float y = (float)m_vecCtrlPt[0].y * pow(1 - t, 2)   +
  44. (float)m_vecCtrlPt[1].y * t * (1 - t) * 2 +
  45. (float)m_vecCtrlPt[2].y * pow(t, 2);
  46. stPt.x =x;
  47. stPt.y= y;
  48. }

Bezier曲线的原理 及 二次Bezier曲线的实现的更多相关文章

  1. Bezier贝塞尔曲线的原理、二次贝塞尔曲线的实现

    Bezier曲线的原理 Bezier曲线是应用于二维图形的曲线.曲线由顶点和控制点组成,通过改变控制点坐标可以改变曲线的形状. 一次Bezier曲线公式: 一次Bezier曲线是由P0至P1的连续点, ...

  2. 贝塞尔曲线:原理、自定义贝塞尔曲线View、使用!!!

    一.原理 转自:http://www.2cto.com/kf/201401/275838.html Android动画学习Demo(3) 沿着贝塞尔曲线移动的Property Animation Pr ...

  3. Android 利用二次贝塞尔曲线模仿购物车加入物品抛物线动画

    Android 利用二次贝塞尔曲线模仿购物车加入物品抛物线动画 0.首先.先给出一张效果gif图. 1.贝塞尔曲线原理及相关公式參考:http://www.jianshu.com/p/c0d7ad79 ...

  4. Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之ORACLE集群概念和原理(二)

    ORACLE集群概念和原理(二) 概述:写下本文档的初衷和动力,来源于上篇的<oracle基本操作手册>.oracle基本操作手册是作者研一假期对oracle基础知识学习的汇总.然后形成体 ...

  5. canvas绘制二次贝塞尔曲线----演示二次贝塞尔四个参数的作用

    canvas中绘制二次贝塞尔曲线的方法为ctx.quadraticCurveTo(x1,y1,x2,y2); 四个参数分别为两个控制点的坐标.开始点即当前canvas中目前的点,如果想从指定的点开始, ...

  6. 深入源码分析SpringMVC底层原理(二)

    原文链接:深入源码分析SpringMVC底层原理(二) 文章目录 深入分析SpringMVC请求处理过程 1. DispatcherServlet处理请求 1.1 寻找Handler 1.2 没有找到 ...

  7. JVM 内部原理(二)— 基本概念之字节码

    JVM 内部原理(二)- 基本概念之字节码 介绍 版本:Java SE 7 每位使用 Java 的程序员都知道 Java 字节码在 Java 运行时(JRE - Java Runtime Enviro ...

  8. 【转】Oracle 集群】ORACLE DATABASE 11G RAC 知识图文详细教程之ORACLE集群概念和原理(二)

      阅读目录 目录 Oracle集群概念和原理 RAC概述 RAC 集成集群件管理 RAC 的体系结构 RAC 的结构组成和机制 RAC 后台进程 RAC 共享存储 RAC 数据库和单实例数据库的区别 ...

  9. 基于canvas二次贝塞尔曲线绘制鲜花

    canvas中二次贝塞尔曲线参数说明: cp1x:控制点1横坐标 cp1y:控制点1纵坐标 x: 结束点1横坐标 y:结束点1纵坐标 cp2x:控制点2横坐标 cp2y:控制点2纵坐标 z:结束点2横 ...

随机推荐

  1. Linux SHELL 命令入门题目答案(一)

    1.如何使用shell 打印 “Hello World!” (1)如果你希望打印 !,那就不要将其放入双引号中,或者你可以通过转义字符转义(2)echo 'hello world!' 使用单引号ech ...

  2. ubantu安装sogou输入法

    Ubuntu的搜狗输入法安装步骤   1 本来想先移除ibus,但是在之后发现如果直接使用下面的命令 sudo apt-get remove ibus 移除ibus将导致系统某些地方不正常的问题,例如 ...

  3. 用sessionStorage实现页面之间的数据传输

    1.sessionStorage主要含几种方法: //页面A:存放一个简单的字符串 sessionStorage.obj = '123'; //页面B:取到给obj var str = session ...

  4. Sql server 数据库中,纯SQL语句查询、执行 单引号问题。

    在默认值情况下, select 'abc',Titile from tb_Name;  ---输出内容 是abc: 如果想输出 单引号 'abc,需要使用select '''abc',Titile f ...

  5. php处理字符串格式的计算公式

    有时候我们对每一种产品都有一个提成公式,而这个计算提成的公式是以字符串格式存在表中的 当我们用这个计算公式时,他并不像我们写的:$a=2+3*5;这样简单的能计算出结果,而它是个字符串 所以,我们就必 ...

  6. HDU2544-最短路&lpar;最短路模版题目&rpar;

    Problem Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要 ...

  7. GFS 安装使用

    准备环境: 1.OS: Centos:7.2x86_64 2.主机 server1: 192.168.30.41 wohaoshuai1 server2: 192.168.30.42 wohaoshu ...

  8. (转)C&num;&period;NET WINFORM应用程序中控制应用程序只启动一次

    原文地址 :http://www.cnblogs.com/emanlee/archive/2009/08/31/1557379.html using System; using System.Thre ...

  9. 使用Oracle数据库,对某个表频繁更新

    使用Oracle数据库,对某个表频繁更新,查询时要联合这张表,查询速度非常慢,有什么解决办法? 一般的pc机oracle更新的效率均可达到500+/s, 可能的问题,你更新这个不会是每次都新建jdbc ...

  10. 05-Servlet与内部加载机制&lpar;part1&rpar;

     一.什么是Servlet Servlet 运行在服务端的Java小程序, 是sun公司提供一套规范(接口)     主要功能: 用来处理客户端请求 响应给浏览器的动态资源 servlet的实质就是j ...