题目链接:http://vjudge.net/contest/143062#problem/C
题意:
给定一个无向图,大写字母是城市,小写字母是村庄,经过城市交过路费为当前货物的%5,路过村庄固定交1,给定起点终点和到目标地点要剩下的货物,问最少要带多少货物上路,并输出路径,如果有多种方案,要求字典序最小.
分析:
逆向最短路: 因为要求的就是起点的货量,从终点出发求最短路,但是,费用的计算要处理,重新定义d 数组,d[i] 表示,进入节点 I 以后,还要多少 d[i] 个 货品 才能到达终点。d[T] = P;
然后就是怎么求 d[i] 了,根据 i 的类型, i >=26 ,就需要 d[i] + 1;
否则就是 20 里面抽 1;
#include <bits/stdc++.h>
using namespace std; const int maxn = + ;
const long long INF = 1LL << ; int n;
int G[maxn][maxn];
bool mark[maxn];
int p;
int src;
int dest;
long long d[maxn]; int read_node()
{
char ch[];
scanf("%s", ch);
if(ch[] >= 'A' && ch[] <= 'Z') return ch[] - 'A';
else return ch[] - 'a' + ;
} char format_node(int u)
{
return u < ? 'A' + u : 'a' + (u - );
} // 拿着item个东西去结点next,还剩多少个东西
long long forward(long long item, int next)
{
if(next < ) return item - (item + ) / ;
return item - ;
} // 至少要拿着多少个东西到达结点u,交税以后还能剩d[u]个东西
long long back(int u)
{
if(u >= ) return d[u]+;
long long X = d[u] * / ; // 初始值
while(forward(X, u) < d[u]) X++; // 调整
return X;
} void solve()
{
n = ; // 总是有52个结点
memset(mark, , sizeof(mark));
d[dest] = p;
mark[dest] = ;
for(int i = ; i < n; i++) if(i != dest)
{
d[i] = INF;
if(G[i][dest]) d[i] = back(dest);
} // Dijkstra主过程,逆推
while(!mark[src])
{
// 找最小的d
int minu = -;
for(int i = ; i < n; i++) if(!mark[i])
{
if(minu < || d[i] < d[minu]) minu = i;
}
mark[minu] = ;
// 更新其他结点的d
for(int i = ; i < n; i++) if(!mark[i])
{
if(G[i][minu]) d[i] = min(d[i], back(minu));
}
} printf("%lld\n", d[src]);
printf("%c", format_node(src));
int u = src;
long long item = d[src];
while(u != dest)
{
int next;
for(next = ; next < n; next++) // 找到第一个可以走的结点
if(G[u][next] && forward(item, next) >= d[next]) break;
item = d[next];
printf("-%c", format_node(next));
u = next;
}
printf("\n");
} int main()
{
int kase = ;
while(scanf("%d", &n) == && n >= )
{
memset(G, , sizeof(G));
for(int i = ; i < n; i++)
{
int u = read_node();
int v = read_node();
if(u != v) G[u][v] = G[v][u] = ;
}
scanf("%d", &p);
src = read_node();
dest = read_node();
printf("Case %d:\n", ++kase);
solve();
}
return ;
}
Uva 10537 过路费的更多相关文章
-
UVA 10537 - The Toll! Revisited(dijstra扩张)
UVA 10537 - The Toll! Revisited option=com_onlinejudge&Itemid=8&page=show_problem&catego ...
-
UVA 10537 The Toll! Revisited 过路费(最短路,经典变形)
题意:给一个无向图,要从起点s运送一批货物到达终点e,每个点代表城镇/乡村,经过城镇需要留下(num+19)/20的货物,而经过乡村只需要1货物即可.现在如果要让p货物到达e,那么从起点出发最少要准备 ...
-
UVA 10537 The Toll! Revisited uva1027 Toll(最短路+数学坑)
前者之所以叫加强版,就是把uva1027改编了,附加上打印路径罢了. 03年的final题哦!!虽然是水题,但不是我这个只会做图论题的跛子能轻易尝试的——因为有个数学坑. 题意:运送x个货物从a-&g ...
-
【Toll!Revisited(uva 10537)】
题目来源:蓝皮书P331 ·这道题使得我们更加深刻的去理解Dijkstra! 在做惯了if(dis[u]+w<dis[v])的普通最短路后,这道选择路径方案不是简单的比大小的题横在了 ...
-
uva 10537 Toll! Revisited(优先队列优化dijstra及变形)
Toll! Revisited 大致题意:有两种节点,一种是大写字母,一种是小写字母. 首先输入m条边.当经过小写字母时须要付一单位的过路费.当经过大写字母时,要付当前財务的1/20做过路费. 问在起 ...
-
UVa 10537 The Toll! Revisited (最短路)
题意:给定一个图,你要从 s 到达 t,当经过大写字母时,要交 ceil(x /20)的税,如果经过小写字母,那么交 1的税,问你到达 t 后还剩下 c 的,那么最少要带多少,并输出一个解,如果多个解 ...
-
The Toll! Revisited UVA - 10537(变形。。)
给定图G=(V,E)G=(V,E),VV中有两类点,一类点(AA类)在进入时要缴纳1的费用,另一类点(BB类)在进入时要缴纳当前携带金额的1/20(不足20的部分按20算) 已知起点为SS,终点为TT ...
-
UVA 10537 Toll! Revisited (逆推,最短路)
从终点逆推,d[u]表示进入u以后剩下的货物,那么进入u之前的货物数量设为y,d[u] = x,那么y-x=ceil(y/20.0)=(y-1)/20+1=(y+19)/20. (y-x)*20+r= ...
-
uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
随机推荐
-
深入浅出设计模式——抽象工厂模式(Abstract Factory)
模式动机在工厂方法模式中具体工厂负责生产具体的产品,每一个具体工厂对应一种具体产品,工厂方法也具有唯一性,一般情况下,一个具体工厂中只有一个工厂方法或者一组重载的工厂方法.但是有时候我们需要一个工厂可 ...
-
小printf的故事(未完待续)
小printf的故事 这篇文章的原文来自:英文原文作者仿照<小王子>中的情节,生动有趣的阐述了小printf从编程小白到专家的成长历程.这是我第一次尝试翻译文章,肯定有很多不足之处,情不要 ...
-
hdu 1421
时隔多日,又回来啃dp... 题意:有n件物品,搬k次,每搬一个消耗的疲劳值为两件物品重量之差的平方,求最小的疲劳消耗 状态转移方程:dp[i][j] = min((dp[i-2][j-1]+(s[i ...
-
C++: byte 和 int 的相互转化
原文链接:http://blog.csdn.net/puttytree/article/details/7825709 NumberUtil.h // // NumberUtil.h // MinaC ...
-
函数iconv_substr和mb_substr
二个函数iconv_substr和mb_substr,均可以在当前字符下进行字符串截取,以达到中文字符截取的不乱码. 应该如何选择呢? 1.iconv库在某些操作系统上可能运行不正确,需要安装GNU扩 ...
-
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式. 证明: 注意到 $$\beex \bea \c ...
-
JMeter&#160;线程组之Stepping&#160;Thread&#160;Group插件介绍
线程组之Stepping Thread Group插件介绍 by:授客 QQ:1033553122 测试环境 apache-jmeter-2.13 插件: https://jmeter-plu ...
-
Javascript--数组转换成字符串
定义和用法 toString() 方法可把数组转换为字符串,并返回结果. 语法 arrayObject.toString() 返回值 arrayObject 的字符串表示.返回值与没有参数的 join ...
-
大数据开发实战:Stream SQL实时开发一
1.流计算SQL原理和架构 流计算SQL通常是一个类SQL的声明式语言,主要用于对流式数据(Streams)的持续性查询,目的是在常见流计算平台和框架(如Storm.Spark Streaming.F ...
-
keepalived+lvs高可用集群
LVS+Keepalived 介绍 LVS LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统.本项目在1998年5月由章文嵩博士成立,是中国 ...