Caffe学习系列(5):其它常用层及参数

时间:2022-09-14 15:04:38

本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。

1、softmax-loss

softmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logistic Regression 只能用于二分类,而softmax可以用于多分类。

softmax与softmax-loss的区别:

softmax计算公式:

Caffe学习系列(5):其它常用层及参数

而softmax-loss计算公式:

Caffe学习系列(5):其它常用层及参数

关于两者的区别更加具体的介绍,可参考:softmax vs. softmax-loss

用户可能最终目的就是得到各个类别的概率似然值,这个时候就只需要一个 Softmax层,而不一定要进行softmax-Loss 操作;或者是用户有通过其他什么方式已经得到了某种概率似然值,然后要做最大似然估计,此时则只需要后面的 softmax-Loss 而不需要前面的 Softmax 操作。因此提供两个不同的 Layer 结构比只提供一个合在一起的 Softmax-Loss Layer 要灵活许多。

不管是softmax layer还是softmax-loss layer,都是没有参数的,只是层类型不同而也

softmax-loss layer:输出loss值

layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip1"
bottom: "label"
top: "loss"
}

softmax layer: 输出似然值

layers {
bottom: "cls3_fc"
top: "prob"
name: "prob"
type: “Softmax"
}

2、Inner Product

全连接层,把输入当作成一个向量,输出也是一个简单向量(把输入数据blobs的width和height全变为1)。

输入: n*c0*h*w

输出: n*c1*1*1

全连接层实际上也是一种卷积层,只是它的卷积核大小和原数据大小一致。因此它的参数基本和卷积层的参数一样。

层类型:InnerProduct

lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

必须设置的参数:

  num_output: 过滤器(filfter)的个数

其它参数:

      weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
      bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
      bias_term: 是否开启偏置项,默认为true, 开启
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}

3、accuracy

输出分类(预测)精确度,只有test阶段才有,因此需要加入include参数。

层类型:Accuracy

layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}

4、reshape

在不改变数据的情况下,改变输入的维度。

层类型:Reshape

先来看例子

 layer {
name: "reshape"
type: "Reshape"
bottom: "input"
top: "output"
reshape_param {
shape {
dim: 0 # copy the dimension from below
dim: 2
dim: 3
dim: -1 # infer it from the other dimensions
}
}
}

有一个可选的参数组shape, 用于指定blob数据的各维的值(blob是一个四维的数据:n*c*w*h)。

dim:0  表示维度不变,即输入和输出是相同的维度。

dim:2 或 dim:3 将原来的维度变成2或3

dim:-1 表示由系统自动计算维度。数据的总量不变,系统会根据blob数据的其它三维来自动计算当前维的维度值 。

假设原数据为:64*3*28*28, 表示64张3通道的28*28的彩色图片

经过reshape变换:

   reshape_param {
shape {
dim: 0
dim: 0
dim: 14
dim: -1
}
}

输出数据为:64*3*14*56

5、Dropout

Dropout是一个防止过拟合的trick。可以随机让网络某些隐含层节点的权重不工作。

先看例子:

layer {
name: "drop7"
type: "Dropout"
bottom: "fc7-conv"
top: "fc7-conv"
dropout_param {
dropout_ratio: 0.5
}
}

只需要设置一个dropout_ratio就可以了。

还有其它更多的层,但用的地方不多,就不一一介绍了。

随着深度学习的深入,各种各样的新模型会不断的出现,因此对应的各种新类型的层也在不断的出现。这些新出现的层,我们只有在等caffe更新到新版本后,再去慢慢地摸索了。

Caffe学习系列(5):其它常用层及参数的更多相关文章

  1. Caffe学习系列(2):数据层及参数

    要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成.所有的参数都定义在caffe.proto这个文件 ...

  2. 转 Caffe学习系列(2):数据层及参数

    http://www.cnblogs.com/denny402/p/5070928.html 要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个 ...

  3. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  4. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  5. Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  6. 转 Caffe学习系列(4):激活层(Activiation Layers)及参数

    在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的.从bottom得到一个blob数据输入,运算后,从top输入一个blob数据.在运算过程中,没有改变数据的大小,即输入 ...

  7. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  8. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  9. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  10. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

随机推荐

  1. linux shell脚本常用语句

    linux shell 指令 诸如-d, -f, -e之类的判断表达式: 文件比较运算符-e filename  如果 filename存在,则为真  [ -e /var/log/syslog ]-d ...

  2. C# json

    C# 解析 json JSON(全称为JavaScript Object Notation) 是一种轻量级的数据交换格式.它是基于JavaScript语法标准的一个子集. JSON采用完全独立于语言的 ...

  3. 学习嵌入式Linux有没有一个最佳的顺序(持续更新)

    作为一个嵌入式Linux的初学者,我知道我可能将长期处于初学者阶段,因为我至今仍然没有能够摸索出一条很好的道路让我由初学者进入到更高级阶段.但是我始终没有放弃,本篇文章就是用来记录我学习嵌入式Linu ...

  4. vc2008构建和使用libcurl静态库

    1>下载CURL源代码curl-7.26.0.zip 2>用VC2008/2005打开工程curl-7.26.0\lib\libcurl.vcproj,转换下工程并构建,可以直接编译成功! ...

  5. 10ci

  6. MongoDB 之 你得知道MongoDB是个什么鬼 MongoDB - 1

    最近有太多的同学向我提起MongoDB,想要学习MongoDB,还不知道MongoDB到底是什么鬼,或者说,知道是数据库,知道是文件型数据库,但是不知道怎么来用 那么好,所谓千呼万唤始出来,现在我就拉 ...

  7. [Spring MVC] 表单提交日期转换问题,比如可能导致封装实体类时400错误

    三种格式的InitBinder @InitBinder//https://*.com/questions/20616319/the-request-sent-by-the-cl ...

  8. 常用的OO设计原则

    常用的OO设计原则: 1 封装变化:找出应用中可能需要变化之处,把它们独立出来,不要和哪些不需要变化的代码混在一起. 2 针对接口编程,而不是针对实现编程. 3 多用组合,少用继承. 4 松耦合:为了 ...

  9. [Oracle]如何在Oracle中设置Event

    为了调查Oracle 的故障,可以通过设置event ,来了解详细的状况.方法如下: ■ 如果使用 SPFILE, =============To enable it: 1. Check the cu ...

  10. Composer 中文镜像 Lavavel-china 公益项目

    『Composer 中国全量镜像』是由 Laravel China 社区联合 又拍云 与 优帆远扬 共同合作推出的公益项目,旨在为广大 PHP 用户提供稳定和高速的 Composer 国内镜像服务. ...