Harris角点

时间:2022-09-14 14:25:17

1. 不同类型的角点

在现实世界中,角点对应于物体的拐角,道路的十字路口、丁字路口等。从图像分析的角度来定义角点可以有以下两种定义:

  1. 角点可以是两个边缘的角点;
  2. 角点是邻域内具有两个主方向的特征点;

前者往往需要对图像边缘进行编码,这在很大程度上依赖于图像的分割与边缘提取,具有相当大的难度和计算量,且一旦待检测目标局部发生变化,很可能导致操作的失败。早期主要有Rosenfeld和Freeman等人的方法,后期有CSS等方法。

基于图像灰度的方法通过计算点的曲率及梯度来检测角点,避免了第一类方法存在的缺陷,此类方法主要有Moravec算子、Forstner算子、Harris算子、SUSAN算子等。

Harris角点

这篇文章主要介绍的Harris角点检测的算法原理,比较著名的角点检测方法还有jianbo Shi和Carlo Tomasi提出的Shi-Tomasi算法,这个算法开始主要是为了解决跟踪问题,用来衡量两幅图像的相似度,我们也可以把它看为Harris算法的改进。OpenCV中已经对它进行了实现,接口函数名为GoodFeaturesToTrack()。另外还有一个著名的角点检测算子即SUSAN算子,SUSAN是Smallest Univalue Segment Assimilating Nucleus(最小核值相似区)的缩写。SUSAN使用一个圆形模板和一个圆的中心点,通过圆中心点像素与模板圆内其他像素值的比较,统计出与圆中心像素近似的像元数量,当这样的像元数量小于某一个阈值时,就被认为是要检测的角点。我觉得可以把SUSAN算子看为Harris算法的一个简化。这个算法原理非常简单,算法效率也高,所以在OpenCV中,它的接口函数名称为:FAST()

2. Harris角点

2.1 基本原理

人眼对角点的识别通常是在一个局部的小区域或小窗口完成的。如果在各个方向上移动这个特征的小窗口,窗口内区域的灰度发生了较大的变化,那么就认为在窗口内遇到了角点。如果这个特定的窗口在图像各个方向上移动时,窗口内图像的灰度没有发生变化,那么窗口内就不存在角点;如果窗口在某一个方向移动时,窗口内图像的灰度发生了较大的变化,而在另一些方向上没有发生变化,那么,窗口内的图像可能就是一条直线的线段。

Harris角点

对于图像$I(x,y)$,当在点$(x,y)$处平移$(\Delta x,\Delta y)$后的自相似性,可以通过自相关函数给出:

$$c(x,y;\Delta x,\Delta y) = \sum_{(u,v)\in W(x,y)}w(u,v)(I(u,v) – I(u+\Delta x,v+\Delta y))^2$$

其中,$W(x,y)$是以点$(x,y)$为中心的窗口,$w(u,v)$为加权函数,它既可是常数,也可以是高斯加权函数。

Harris角点

根据泰勒展开,对图像$I(x,y)$在平移$(\Delta x,\Delta y)$后进行一阶近似:

$$I(u+\Delta x,v+\Delta y) = I(u,v)+I_x(u,v)\Delta x+I_y(u,v)\Delta y+O(\Delta x^2,\Delta y^2)\approx I(u,v)+I_x(u,v)\Delta x+I_y(u,v)\Delta y$$

其中,$I_x,I_y$是图像$I(x,y)$的偏导数,这样的话,自相关函数则可以简化为:

$$c(x,y;\Delta x,\Delta y)\approx \sum_w (I_x(u,v)\Delta x+I_y(u,v)\Delta y)^2=[\Delta x,\Delta y]M(x,y)\begin{bmatrix}\Delta x \\ \Delta y\end{bmatrix}$$

其中

$$M(x,y)=\sum_w \begin{bmatrix}I_x(x,y)^2&I_x(x,y)I_y(x,y) \\ I_x(x,y)I_y(x,y)&I_y(x,y)^2\end{bmatrix} = \begin{bmatrix}\sum_w I_x(x,y)^2&\sum_w I_x(x,y)I_y(x,y) \\\sum_w I_x(x,y)I_y(x,y)&\sum_w I_y(x,y)^2\end{bmatrix}=\begin{bmatrix}A&C\\C&B\end{bmatrix} $$

也就是说图像$I(x,y)$在点$(x,y)$处平移$(\Delta x,\Delta y)$后的自相关函数可以近似为二项函数:

$$c(x,y;\Delta x,\Delta y)\approx A\Delta x^2+2C\Delta x\Delta y+B\Delta y^2$$

其中

$$A=\sum_w I_x^2, B=\sum_w I_y^2,C=\sum_w I_x I_y$$

二次项函数本质上就是一个椭圆函数。椭圆的扁率和尺寸是由$M(x,y)$的特征值$\lambda_1、\lambda_2$决定的,椭贺的方向是由$M(x,y)$的特征矢量决定的,如下图所示,椭圆方程为:

$$[\Delta x,\Delta y]M(x,y)\begin{bmatrix}\Delta x \\ \Delta y\end{bmatrix} = 1$$

Harris角点

椭圆函数特征值与图像中的角点、直线(边缘)和平面之间的关系如下图所示。共可分为三种情况:

  • 图像中的直线。一个特征值大,另一个特征值小,$\lambda_1\gg \lambda_2$或$\lambda_2\gg \lambda_1$。自相关函数值在某一方向上大,在其他方向上小。
  • 图像中的平面。两个特征值都小,且近似相等;自相关函数数值在各个方向上都小。
  • 图像中的角点。两个特征值都大,且近似相等,自相关函数在所有方向都增大。

    Harris角点

根据二次项函数特征值的计算公式,我们可以求$M(x,y)$矩阵的特征值。但是Harris给出的角点差别方法并不需要计算具体的特征值,而是计算一个角点响应值$R$来判断角点。$R$的计算公式为:

$$R=det \boldsymbol{M} - \alpha(trace\boldsymbol{M})^2$$

式中,$det\boldsymbol{M}$为矩阵$\boldsymbol{M}=\begin{bmatrix}A&B\\B&C\end{bmatrix}$的行列式;$trace\boldsymbol{M}$为矩阵$\boldsymbol{M}$的直迹;$\alpha$为经常常数,取值范围为0.04~0.06。事实上,特征是隐含在$det\boldsymbol{M}$和$trace\boldsymbol{M}$中,因为,

$$det\boldsymbol{M} = \lambda_1\lambda_2=AC-B^2$$

$$trace\boldsymbol{M}=\lambda_2+\lambda_2=A+C$$

2.2 Harris角点算法实现

根据上述讨论,可以将Harris图像角点检测算法归纳如下,共分以下五步:

1. 计算图像$I(x,y)$在$X$和$Y$两个方向的梯度$I_x、I_y$。

$$I_x=\frac{\partial I}{\partial x}=I\otimes(-1\ 0\ 1),I_y =\frac{\partial I}{\partial x}=I\otimes(-1\ 0\ 1)^T $$

2. 计算图像两个方向梯度的乘积。

$$I_x^2=I_x\cdot I_y,I_y^2=I_y\cdot I_y,I_{xy}=I_x\cdot I_y$$

3. 使用高斯函数对$I_x^2、I_y^2和I_{xy}$进行高斯加权(取$\sigma=1$),生成矩阵$M$的元素$A、B$和$C$。

$$A=g(I_x^2)=I_x^2\otimes w,C=g(I_y^2)=I_y^2\otimes w,B=g(I_{x,y})=I_{xy}\otimes w$$

4. 计算每个像素的Harris响应值$R$,并对小于某一阈值$t$的$R$置为零。

$$R=\{R:det \boldsymbol{M} - \alpha(trace\boldsymbol{M})^2<t\}$$

5. 在$3\times3$或$5\times5$的邻域内进行非最大值抑制,局部最大值点即为图像中的角点。

Harris角点检测的C++实现代码:https://github.com/RonnyYoung/ImageFeatures/blob/master/source/harris.cpp

2.3 Harris角点的性质

1. 参数$\alpha$对角点检测的影响

假设已经得到了矩阵$\boldsymbol{M}$的特征值$\lambda_1\ge\lambda_2\ge0$,令$\lambda_2=k\lambda_1,0\le k\le 1$。由特征值与矩阵$\boldsymbol{M}$的直迹和行列式的关系可得:

$$det\boldsymbol{M}=\prod_i\lambda_i \ \ \ \ \ \  trace\boldsymbol{M}=\sum_i\lambda_i$$

从而可以得到角点的响应

$$R=\lambda_2\lambda_2=\alpha(\lambda_2+\lambda_2)^2=\lambda^2(k-\alpha(1+k)^2)$$

假设$R\ge0$,则有:

$$0\le \alpha \le\frac{k}{(1+k)^2}\le0.25$$

对于较小的$k$值,$R\approx\lambda^2(k-\alpha),\alpha<k$。

由此,可以得出这样的结论:增大$\alpha$的值,将减小角点响应值$R$,降低角点检测的灵性,减少被检测角点的数量;减小$\alpha$值,将增大角点响应值$R$,增加角点检测的灵敏性,增加被检测角点的数量。

2. Harris角点检测算子对亮度和对比度的变化不敏感

这是因为在进行Harris角点检测时,使用了微分算子对图像进行微分运算,而微分运算对图像密度的拉升或收缩和对亮度的抬高或下降不敏感。换言之,对亮度和对比度的仿射变换并不改变Harris响应的极值点出现的位置,但是,由于阈值的选择,可能会影响角点检测的数量。

Harris角点 Harris角点

3. Harris角点检测算子具有旋转不变性

Harris角点检测算子使用的是角点附近的区域灰度二阶矩矩阵。而二阶矩矩阵可以表示成一个椭圆,椭圆的长短轴正是二阶矩矩阵特征值平方根的倒数。当特征椭圆转动时,特征值并不发生变化,所以判断角点响应值$R$也不发生变化,由此说明Harris角点检测算子具有旋转不变性。

4. Harris角点检测算子不具有尺度不变性

如下图所示,当右图被缩小时,在检测窗口尺寸不变的前提下,在窗口内所包含图像的内容是完全不同的。左侧的图像可能被检测为边缘或曲线,而右侧的图像则可能被检测为一个角点。

Harris角点

2.4 Harris的OpenCV接口

OpenCV的Hairrs角点检测的函数为cornerHairrs(),但是它的输出是一幅浮点值图像,浮点值越高,表明越可能是特征角点,我们需要对图像进行阈值化。

C++: void cornerHarris(InputArray src, OutputArray dst, int blockSize, int apertureSize, double k, int borderType = BORDER_DEFAULT);
  • src – 输入的单通道8-bit或浮点图像。
  • dst – 存储着Harris角点响应的图像矩阵,大小与输入图像大小相同,是一个浮点型矩阵。
  • blockSize – 邻域大小。
  • apertureSize – 扩展的微分算子大。
  • k – 响应公式中的,参数$\alpha$。
  • boderType – 边界处理的类型。
int main()
{
Mat image = imread("../buliding.png");
Mat gray;
cvtColor(image, gray, CV_BGR2GRAY); Mat cornerStrength;
cornerHarris(gray, cornerStrength, , , 0.01);
threshold(cornerStrength, cornerStrength, 0.001, , THRESH_BINARY);
return ;
}

Harris角点     Harris角点   Harris角点

从上面上间一幅图像我们可以看到,有很多角点都是粘连在一起的,我们下面通过加入非极大值抑制来进一步去除一些粘在一起的角点。

非极大值抑制原理是,在一个窗口内,如果有多个角点则用值最大的那个角点,其他的角点都删除,窗口大小这里我们用3*3,程序中通过图像的膨胀运算来达到检测极大值的目的,因为默认参数的膨胀运算就是用窗口内的最大值替代当前的灰度值。

int main()
{
Mat image = imread("buliding.png");
Mat gray;
cvtColor(image, gray, CV_BGR2GRAY); Mat cornerStrength;
cornerHarris(gray, cornerStrength, , , 0.01); double maxStrength;
double minStrength;
// 找到图像中的最大、最小值
minMaxLoc(cornerStrength, &minStrength, &maxStrength); Mat dilated;
Mat locaMax;
// 膨胀图像,最找出图像中全部的局部最大值点
dilate(cornerStrength, dilated, Mat());
// compare是一个逻辑比较函数,返回两幅图像中对应点相同的二值图像
compare(cornerStrength, dilated, locaMax, CMP_EQ); Mat cornerMap;
double qualityLevel = 0.01;
double th = qualityLevel*maxStrength; // 阈值计算
threshold(cornerStrength, cornerMap, th, , THRESH_BINARY);
cornerMap.convertTo(cornerMap, CV_8U);
// 逐点的位运算
bitwise_and(cornerMap, locaMax, cornerMap); drawCornerOnImage(image, cornerMap);
namedWindow("result");
imshow("result", image);
waitKey(); return ;
}
void drawCornerOnImage(Mat& image, const Mat&binary)
{
Mat_<uchar>::const_iterator it = binary.begin<uchar>();
Mat_<uchar>::const_iterator itd = binary.end<uchar>();
for (int i = ; it != itd; it++, i++)
{
if (*it)
circle(image, Point(i%image.cols, i / image.cols), , Scalar(, , ), );
}
}

现在我们得到的效果就比默认的函数得到的结果有相当的改善,如上面最右边效果图。

3. 多尺度Harris角点

3.1 多尺度Harris角点的原理

虽然Harris角点检测算子具有部分图像灰度变化的不变性和旋转不变性,但它不具有尺度不变性。但是尺度不变性对图像特征来说至关重要。人们在使用肉眼识别物体时,不管物体远近,尺寸的变化都能认识物体,这是因为人的眼睛在辨识物体时具有较强的尺度不变性。在图像特征提取:尺度空间理论这篇文章里就已经讲到了高斯尺度空间的概念。下面将Harris角点检测算子与高斯尺度空间表示相结合,使用Harris角点检测算子具有尺度的不变性。

仿照Harris角点检测中二阶矩的表示方法,使用$M=\mu(x,\sigma_I,\sigma_D)$为尺度自适应的二阶矩:

$$\boldsymbol{M}=\mu(x,\sigma_I,\sigma_D)=\sigma_D^2g(\sigma_I)\otimes\begin{bmatrix}L_x^2(x,\sigma_D)&L_xL_y(x,\sigma_D)\\L_xL_y(x,\sigma_D)&L_y^2(x,\sigma_D)\end{bmatrix} $$

其中,$g(\sigma_I)$表示尺度为$sigma_I$的高斯卷积核,$x$表示图像的位置。与高斯测度空间类似,使用$L(x)$表示经过高斯平滑后的图像,符号$\otimes$表示卷积,$L_x(x,\sigma_D)$和$L_y(x,\sigma_D)$表示对图像使用高斯$g(\sigma_D)$函数进行平滑后,在$x$或$y$方向取其微分的结果,即$L_x=\partial_xL$和$L_y=\partial_yL$。通常将$\sigma_I$称为积分尺度,它是决定Harris角点当前尺度的变量,$\sigma_D$为微分尺度或局部尺度,它是决定角点附近微分值变化的变量。显然,积分尺度$\sigma_I$应该大于微分尺度$\sigma_D$。

3.2 多尺度Harris角点实现

首先,检测算法从预先定义的一组尺度中进行积分尺度搜索,这一组尺度定义为

$$\sigma_1\dots\sigma_n = \sigma_0\dots k^n\sigma_0$$

一般情况下使用k=1.4。为了减少搜索的复杂性,对于微分尺度$\sigma_D$的选择,我们采用在积分尺度的基础上,乘以一个比例常数,即$\sigma_D=s\sigma_I$,一般取s=0.7。这样,通常使用积分和微分的尺度,便可以生成$\mu(x,\sigma_I,\sigma_D)$,再利用Harris角点判断准则,对角点进行搜索,具体可以分两步进行。

1. 与Harris角点搜索类似,对于给定的尺度空间值$\sigma_D$,进行如下角点响应值计算和判断:

$$cornerness = det(\mu(x,\sigma_n)-\alpha trace^2(\mu(x,\sigma_n)))>threshold_H$$

2. 对于满足1中条件的点,在点的8邻域内进行角点响应最大值搜索(即非最大值抑制)出在8邻域内角点响应最大值的点。对于每个尺度$\sigma_n(1,2,\dots,n)$都进行如上搜索。

由于位置空间的候选点并不一定在尺度空间上也能成为候选点,所以,我们还要在尺度空间上进行搜索,找到该点的所谓特征尺度值。搜索特征尺度值也分两步。

1. 对于位置空间搜索到的每个候选点,进行拉普拉斯响应计算,并满足其绝对值大于给定的阈值条件:

$$F(x,\sigma_n) = \sigma_n^2|L_{xx}(x,\sigma_n)+L_{yy}(x,\sigma_n)| \ge threshold_L$$

2. 与邻近的两个尺度空间的拉普拉斯响应值进行比较,使其满足:

$$F(x,\sigma_n)>F(x,\sigma_l), \ \ \ l\in \{n-1.n+1\}$$

满足上述条件的尺度值就是该点的特征尺度值。这样,我们就找到了在位置空间和尺度空间都满足条件的Harris角点。

多尺度Harris角点检测C++实现:https://github.com/RonnyYoung/ImageFeatures/blob/master/source/harrisLaplace.cpp

4. 更多的讨论

在上面描述的Harris角点具有光照不变性、旋转不变性、尺度不变性,但是严格意义上来说并不具备仿射不变性。Harris-Affine是一种新颖的检测仿射不变特征点的方法,可以处理明显的仿射变换,包括大尺度变化和明显的视角变化。Harris-Affine主要是依据了以下三个思路:

  1. 特征点周围的二阶矩的计算对区域进行的归一化,具有仿射不变性;
  2. 通过在尺度空间上归一化微分的局部极大值求解来精化对应尺度;
  3. 自适应仿射Harris检测器能够精确定位牲点;

这篇文章不对Harris-Affine作进一步的描述,有时间会对这一算法做专门的分析,有兴趣的可以参考原论文:Scale & Affine Invariant Interest Point Detectors.

5. 参考资料

[1] 《图像局部不变特征与描述》王永明,王贵锦。

[2] Harris角点及Shi-Tomasi角点检测

[3] 图像特征提取PPT

[4] Harris角点检测算法 1

[5] OpenCV Harris角点检测

[6] Opencv学习笔记(五)Harris角点检测

Harris角点的更多相关文章

  1. Harris角点检测算法优化

    Harris角点检测算法优化 一.综述 用 Harris 算法进行检测,有三点不足:(1 )该算法不具有尺度不变性:(2 )该算法提取的角点是像素级的:(3 )该算法检测时间不是很令人满意. 基于以上 ...

  2. Harris角点检测

    代码示例一: #include<opencv2/opencv.hpp> using namespace cv; int main(){ Mat src = imread(); imshow ...

  3. Harris角点(转载)

    1. 不同类型的角点 在现实世界中,角点对应于物体的拐角,道路的十字路口.丁字路口等.从图像分析的角度来定义角点可以有以下两种定义: 角点可以是两个边缘的角点: 角点是邻域内具有两个主方向的特征点: ...

  4. Harris 角点检测

    一 .Motivation 对于做图像处理的人来说,Harris角点检测肯定听过,1988年发表的文章"A combined corner and edge detector"描述 ...

  5. Harris角点算法

    特征点检测广泛应用到目标匹配.目标跟踪.三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色.角点.特征点.轮廓.纹理等特征.现在开始讲解常用的特征点检测,其中Harris角点检 ...

  6. 【OpenCV十六新手教程】OpenCV角检测Harris角点检测

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/29356187 作者:毛星云(浅墨) ...

  7. Harris角点检测算原理

    主要参考了:http://blog.csdn.net/yudingjun0611/article/details/7991601  Harris角点检测算子 本文将该文拷贝了过来,并做了一些数学方面的 ...

  8. Harris角点检测原理分析

    看到一篇从数学意义上讲解Harris角点检测很透彻的文章,转载自:http://blog.csdn.net/newthinker_wei/article/details/45603583 主要参考了: ...

  9. cv2&period;cornerHarris&lpar;&rpar;详解 python&plus;OpenCV 中的 Harris 角点检测

    参考文献----------OpenCV-Python-Toturial-中文版.pdf 参考博客----------http://www.bubuko.com/infodetail-2498014. ...

随机推荐

  1. 【GoLang】GoLang 错误处理 -- 使用 error is value 的思路处理,检查并处理error

    吐血推荐: https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully 参考资料: https:/ ...

  2. 【CodeForces 489A】SwapSort

    题 Description In this problem your goal is to sort an array consisting of n integers in at most n sw ...

  3. Junit使用教程(四)

    一.会用Spring测试套件的好处 在开发基于Spring的应用时,如果你还直接使用Junit进行单元测试,那你就错过了Spring为我们所提供的饕餮大餐了.使用Junit直接进行单元测试有以下四大不 ...

  4. 使用LuaInterface遇到的编码问题

    今天使用LuaInterface加载脚本时忽然报“未知字符”错误信息!于是检查文件编码 将其修改为“US ASCII” 就好了.

  5. AjaxHelper的get和post请求的封装类

    最近在学习ajax的时候发现不断的调用get和post请求时,代码重复很多,有的公司会用自带的封装的方法,这个可以直接调用ajax的方法,但是在运用的时候我们也应该学习它是怎么封装的和一些原理性的东西 ...

  6. 删除缓存内容----unrecognized selector sent to instance

    这条错误主要还得看unrecognized前面,,我的时[NSNumber-length...]其实是变量类型错误.. 无法识别选择器发送实例,,本来意思就是你的controllerview找不到视图 ...

  7. shell 简单脚本编程

    shell脚本编程 编译器,解释器 编程语言: 机器语言,汇编语言,高级语言 静态语言:编译型语言 强类型(变量) 事先转换成可执行格式 C,C++,JAVA,C# 动态语言:解释型语言,on the ...

  8. 从零学习Fluter&lpar;四&rpar;&colon;Flutter中ListView组件系列详展

    今天继续研究了一些Flutter,主要时关于ListVIew那一块的东西,有 SingleChildScrollViewListViewGridViewCustomScrollView 感觉Flutt ...

  9. MT【68】一边柯西一边舍弃

    求$\sqrt{x-5}+\sqrt{24-3x}$的最值. 通常考试时会考你求最大值,常见的方式有三角代换,这里给如下做法: 证明:$\sqrt{x-5}+\sqrt{24-3x}=\sqrt{x- ...

  10. &lpar;转载&rpar;一张表搞清楚西门子S7系列标准DB块与优化DB块

    在TIA Portal中为S7-1200/S7-1500 CPU 添加一个 DB 块时,其缺省属性为优化的 DB ,优化的 DB 块与标准的 DB 块整体对比如下表所示: 项 标准 DB 优化 DB ...