1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
|
# -*- coding: utf-8 -*-
import numpy as np
class Perceptron( object ):
"""
eta:学习率
n_iter:权重向量的训练次数
w_:神经分叉权重向量
errors_:用于记录神经元判断出错次数
"""
def __init__( self , eta = 0.01 , n_iter = 2 ):
self .eta = eta
self .n_iter = n_iter
pass
def fit( self , X, y):
"""
输入训练数据培训神经元
X:神经元输入样本向量
y: 对应样本分类
X:shape[n_samples,n_features]
x:[[1,2,3],[4,5,6]]
n_samples = 2 元素个数
n_features = 3 子向量元素个数
y:[1,-1]
初始化权重向量为0
加一是因为前面算法提到的w0,也就是步调函数阈值
"""
self .w_ = np.zeros( 1 + X.shape[ 1 ])
self .errors_ = []
for _ in range ( self .n_iter):
errors = 0
"""
zip(X,y) = [[1,2,3,1],[4,5,6,-1]]
xi是前面的[1,2,3]
target是后面的1
"""
for xi, target in zip (X, y):
"""
predict(xi)是计算出来的分类
"""
update = self .eta * (target - self .predict(xi))
self .w_[ 1 :] + = update * xi
self .w_[ 0 ] + = update
print update
print xi
print self .w_
errors + = int (update ! = 0.0 )
self .errors_.append(errors)
pass
def net_input( self , X):
"""
z = w0*1+w1*x1+....Wn*Xn
"""
return np.dot(X, self .w_[ 1 :]) + self .w_[ 0 ]
def predict( self , X):
return np.where( self .net_input(X) > = 0 , 1 , - 1 )
if __name__ = = '__main__' :
datafile = '../data/iris.data.csv'
import pandas as pd
df = pd.read_csv(datafile, header = None )
import matplotlib.pyplot as plt
import numpy as np
y = df.loc[ 0 : 100 , 4 ].values
y = np.where(y = = "Iris-setosa" , 1 , - 1 )
X = df.iloc[ 0 : 100 , [ 0 , 2 ]].values
# plt.scatter(X[:50, 0], X[:50, 1], color="red", marker='o', label='setosa')
# plt.scatter(X[50:100, 0], X[50:100, 1], color="blue", marker='x', label='versicolor')
# plt.xlabel("hblength")
# plt.ylabel("hjlength")
# plt.legend(loc='upper left')
# plt.show()
pr = Perceptron()
pr.fit(X, y)
|
其中数据为
控制台输出为
你们跑代码的时候把n_iter设置大点,我这边是为了看每次执行for循环时方便查看数据变化。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/u013692888/article/details/76999252