CodeForces - 919D Substring (DP 记忆化搜索)

时间:2022-09-13 16:06:50

Substring
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a graph with n nodes and m directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is 3. Your task is find a path whose value is the largest.

Input

The first line contains two positive integers n, m (1 ≤ n, m ≤ 300 000), denoting that the graph has n nodes and m directed edges.

The second line contains a string s with only lowercase English letters. The i-th character is the letter assigned to the i-th node.

Then m lines follow. Each line contains two integers x, y (1 ≤ x, y ≤ n), describing a directed edge from x to y. Note that x can be equal to y and there can be multiple edges between x and y. Also the graph can be not connected.

Output

Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead.

Examples
input
5 4
abaca
1 2
1 3
3 4
4 5
output
3
input
6 6
xzyabc
1 2
3 1
2 3
5 4
4 3
6 4
output
-1
input
10 14
xzyzyzyzqx
1 2
2 4
3 5
4 5
2 6
6 8
6 5
2 10
3 9
10 9
4 6
1 10
2 8
3 7
output
4
Note

In the first sample, the path with largest value is 1 → 3 → 4 → 5. The value is 3 because the letter 'a' appears 3 times.


解题思路:记忆化搜索即可。dp[i][j]代表从第i个节点出发,每一位最多有多少个。用深搜即可。拓扑排序判环。。


#include <iostream>
#include <string>
#include <algorithm>
#include <map>
#include <memory.h>
#include <stack>

using namespace std;

inline void scan_d(int &ret)
{
char c;
ret = 0;
while ((c = getchar()) < '0' || c > '9');
while (c >= '0' && c <= '9')
{
ret = ret * 10 + (c - '0'), c = getchar();
}
}

struct edge
{
int v1;
int v2;
int next;
}e[300005];
int head[300005];
int edge_num=0;


void insert(int v1,int v2)
{
e[edge_num].v1=v1;
e[edge_num].v2=v2;
e[edge_num].next=head[v1];
head[v1]=edge_num++;
}
char str[300005];


int dp[300005][30];
bool vis[300005];


void dfs(int x){

vis[x]=1;
for(int i=head[x];i!=-1;i=e[i].next){
if(vis[e[i].v2]){
// cout<<"a: ";
for(int j=0;j<26;j++){
dp[x][j]=max(dp[e[i].v2][j],dp[x][j]);
// cout<<dp[x][j]<<" ";
}
// cout<<endl;
}
else{
dfs(e[i].v2);
// cout<<"b: ";
for(int j=0;j<26;j++){
dp[x][j]=max(dp[e[i].v2][j],dp[x][j]);
// cout<<dp[x][j]<<" ";
}
// cout<<endl;
}
}
dp[x][str[x]-'a']++;
}

int indegree[300005];

bool isLoop(int N) //G是邻接表
{
stack<int> s;
int i,k;
for(i=1;i<=N;i++)
{
if(!indegree[i])
s.push(i); //入度为零的节点入栈
}
int count=0;

while(!s.empty())
{
i = s.top();
s.pop();
count++; //统计遍历过的节点个数
for(int p=head[i];~p;p=e[p].next)
{

indegree[e[p].v2]--;
if(!indegree[e[p].v2])
s.push(e[p].v2);
}
}
if(count==N)
return false;
return true;
}

int main()
{
int n,m;
scan_d(n);
scan_d(m);
//scanf("%d%d",&n,&m);
scanf("%s",str+1);
int a,b;
edge_num=0;
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++){
scan_d(a);
scan_d(b);
// scanf("%d%d",&a,&b);
insert(a,b);
indegree[b]++;
}

if(isLoop(n)){
cout<<-1<<endl;
}
else{

for(int i=1;i<=n;i++)
if(vis[i]==0)
dfs(i);

int ans=0;
for(int i=1;i<=n;i++)
for(int j=0;j<26;j++)
ans=max(ans,dp[i][j]);

cout<<ans<<endl;
}

return 0;

}