场景说明
假设有一个mysql表被水平切分,分散到多个host中,每个host拥有n个切分表。
如果需要并发去访问这些表,快速得到查询结果, 应该怎么做呢?
这里提供一种方案,利用python3的asyncio异步io库及aiomysql异步库去实现这个需求。
代码演示
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
import logging
import random
import asynciofrom aiomysql
import create_pool
# 假设mysql表分散在8个host, 每个host有16张子表
TBLES = { "192.168.1.01" : "table_000-015" ,
# 000-015表示该ip下的表明从table_000一直连续到table_015
"192.168.1.02" : "table_016-031" ,
"192.168.1.03" : "table_032-047" ,
"192.168.1.04" : "table_048-063" ,
"192.168.1.05" : "table_064-079" ,
"192.168.1.06" : "table_080-095" ,
"192.168.1.07" : "table_096-0111" ,
"192.168.1.08" : "table_112-0127" ,
}
USER = "xxx" PASSWD = "xxxx" # wrapper函数,用于捕捉异常def query_wrapper(func):
async def wrapper( * args, * * kwargs):
try :
await func( * args, * * kwargs) except Exception as e:
print (e) return wrapper
# 实际的sql访问处理函数,通过aiomysql实现异步非阻塞请求@
query_wrapperasync def query_do_something(ip, db, table):
async with create_pool(host = ip, db = db, user = USER, password = PASSWD) as pool:
async with pool.get() as conn:
async with conn.cursor() as cur:
sql = ( "select xxx from {} where xxxx" )
await cur.execute(sql. format (table))
res = await cur.fetchall()
# then do something...# 生成sql访问队列, 队列的每个元素包含要对某个表进行访问的函数及参数def gen_tasks():
tasks = [] for ip, tbls in TBLES.items():
cols = re.split( '_|-' , tbls)
tblpre = "_" .join(cols[: - 2 ])
min_num = int (cols[ - 2 ])
max_num = int (cols[ - 1 ])
for num in range (min_num, max_num + 1 ):
tasks.append(
(query_do_something, ip, 'your_dbname' , '{}_{}' . format (tblpre, num))
)
random.shuffle(tasks)
return tasks # 按批量运行sql访问请求队列def run_tasks(tasks, batch_len):
try :
for idx in range ( 0 , len (tasks), batch_len):
batch_tasks = tasks[idx:idx + batch_len]
logging.info( "current batch, start_idx:%s len:%s" % (idx, len (batch_tasks)))
for i in range ( 0 , len (batch_tasks)):
l = batch_tasks[i]
batch_tasks[i] = asyncio.ensure_future(
l[ 0 ]( * l[ 1 :])
)
loop.run_until_complete(asyncio.gather( * batch_tasks))
except Exception as e:
logging.warn(e) # main方法, 通过asyncio实现函数异步调用def main():
loop = asyncio.get_event_loop()
tasks = gen_tasks()
batch_len = len (TBLES.keys()) * 5 # all up to you
run_tasks(tasks, batch_len)
loop.close()
|
以上就是本次相关内容的全部实例代码,大家可以本地测试以下,感谢你对服务器之家的支持。