相同的最大间隔(maximum margin)的概念应用到线性回归拟合。代替最大化分割两类目标是,最大化分割包含大部分的数据点(x,y)。我们将用相同的iris数据集,展示用刚才的概念来进行花萼长度与花瓣宽度之间的线性拟合。
相关的损失函数类似于max(0,|yi-(Axi+b)|-ε)。ε这里,是间隔宽度的一半,这意味着如果一个数据点在该区域,则损失等于0。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
# SVM Regression
#----------------------------------
#
# This function shows how to use TensorFlow to
# solve support vector regression. We are going
# to find the line that has the maximum margin
# which INCLUDES as many points as possible
#
# We will use the iris data, specifically:
# y = Sepal Length
# x = Pedal Width
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Create graph
sess = tf.Session()
# Load the data
# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]
iris = datasets.load_iris()
x_vals = np.array([x[ 3 ] for x in iris.data])
y_vals = np.array([y[ 0 ] for y in iris.data])
# Split data into train/test sets
train_indices = np.random.choice( len (x_vals), round ( len (x_vals) * 0.8 ), replace = False )
test_indices = np.array( list ( set ( range ( len (x_vals))) - set (train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
# Declare batch size
batch_size = 50
# Initialize placeholders
x_data = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32)
y_target = tf.placeholder(shape = [ None , 1 ], dtype = tf.float32)
# Create variables for linear regression
A = tf.Variable(tf.random_normal(shape = [ 1 , 1 ]))
b = tf.Variable(tf.random_normal(shape = [ 1 , 1 ]))
# Declare model operations
model_output = tf.add(tf.matmul(x_data, A), b)
# Declare loss function
# = max(0, abs(target - predicted) + epsilon)
# 1/2 margin width parameter = epsilon
epsilon = tf.constant([ 0.5 ])
# Margin term in loss
loss = tf.reduce_mean(tf.maximum( 0. , tf.subtract(tf. abs (tf.subtract(model_output, y_target)), epsilon)))
# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer( 0.075 )
train_step = my_opt.minimize(loss)
# Initialize variables
init = tf.global_variables_initializer()
sess.run(init)
# Training loop
train_loss = []
test_loss = []
for i in range ( 200 ):
rand_index = np.random.choice( len (x_vals_train), size = batch_size)
rand_x = np.transpose([x_vals_train[rand_index]])
rand_y = np.transpose([y_vals_train[rand_index]])
sess.run(train_step, feed_dict = {x_data: rand_x, y_target: rand_y})
temp_train_loss = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})
train_loss.append(temp_train_loss)
temp_test_loss = sess.run(loss, feed_dict = {x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})
test_loss.append(temp_test_loss)
if (i + 1 ) % 50 = = 0 :
print ( '-----------' )
print ( 'Generation: ' + str (i + 1 ))
print ( 'A = ' + str (sess.run(A)) + ' b = ' + str (sess.run(b)))
print ( 'Train Loss = ' + str (temp_train_loss))
print ( 'Test Loss = ' + str (temp_test_loss))
# Extract Coefficients
[[slope]] = sess.run(A)
[[y_intercept]] = sess.run(b)
[width] = sess.run(epsilon)
# Get best fit line
best_fit = []
best_fit_upper = []
best_fit_lower = []
for i in x_vals:
best_fit.append(slope * i + y_intercept)
best_fit_upper.append(slope * i + y_intercept + width)
best_fit_lower.append(slope * i + y_intercept - width)
# Plot fit with data
plt.plot(x_vals, y_vals, 'o' , label = 'Data Points' )
plt.plot(x_vals, best_fit, 'r-' , label = 'SVM Regression Line' , linewidth = 3 )
plt.plot(x_vals, best_fit_upper, 'r--' , linewidth = 2 )
plt.plot(x_vals, best_fit_lower, 'r--' , linewidth = 2 )
plt.ylim([ 0 , 10 ])
plt.legend(loc = 'lower right' )
plt.title( 'Sepal Length vs Pedal Width' )
plt.xlabel( 'Pedal Width' )
plt.ylabel( 'Sepal Length' )
plt.show()
# Plot loss over time
plt.plot(train_loss, 'k-' , label = 'Train Set Loss' )
plt.plot(test_loss, 'r--' , label = 'Test Set Loss' )
plt.title( 'L2 Loss per Generation' )
plt.xlabel( 'Generation' )
plt.ylabel( 'L2 Loss' )
plt.legend(loc = 'upper right' )
plt.show()
|
输出结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
- - - - - - - - - - -
Generation: 50
A = [[ 2.91328382 ]] b = [[ 1.18453276 ]]
Train Loss = 1.17104
Test Loss = 1.1143
- - - - - - - - - - -
Generation: 100
A = [[ 2.42788291 ]] b = [[ 2.3755331 ]]
Train Loss = 0.703519
Test Loss = 0.715295
- - - - - - - - - - -
Generation: 150
A = [[ 1.84078252 ]] b = [[ 3.40453291 ]]
Train Loss = 0.338596
Test Loss = 0.365562
- - - - - - - - - - -
Generation: 200
A = [[ 1.35343242 ]] b = [[ 4.14853334 ]]
Train Loss = 0.125198
Test Loss = 0.16121
|
基于iris数据集(花萼长度和花瓣宽度)的支持向量机回归,间隔宽度为0.5
每次迭代的支持向量机回归的损失值(训练集和测试集)
直观地讲,我们认为SVM回归算法试图把更多的数据点拟合到直线两边2ε宽度的间隔内。这时拟合的直线对于ε参数更有意义。如果选择太小的ε值,SVM回归算法在间隔宽度内不能拟合更多的数据点;如果选择太大的ε值,将有许多条直线能够在间隔宽度内拟合所有的数据点。作者更倾向于选取更小的ε值,因为在间隔宽度附近的数据点比远处的数据点贡献更少的损失。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/lilongsy/article/details/79391059