我就废话不多说了,大家还是直接看代码吧~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def sq2(x,e):
e = e #误差范围
low = 0
high = max (x, 1.0 ) #处理大于 0 小于 1 的数
guess = (low + high) / 2.0
ctr = 1
while abs (guess * * 2 - x) > e and ctr< = 1000 :
if guess * * 2 < x:
low = guess
else :
high = guess
guess = (low + high) / 2.0
ctr + = 1
print (guess)
|
补充:数值计算方法:二分法求解方程的根(伪代码 python c/c++)
数值计算方法:
二分法求解方程的根
伪代码
1
2
3
4
5
6
7
8
9
10
11
12
|
fun ( input x)
return x^ 2 + x - 6
newton ( input a, input b, input e)
/ / a是区间下界,b是区间上界,e是精确度
x < - (a + b) / 2
if abs (b - 1 ) < e:
return x
else :
if fun(a) * fun(b) < 0 :
return newton(a, x, e)
else :
return newton(x, b, e)
|
c/c++:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
#include <iostream>
#include <cmath>
using namespace std;
double fun ( double x);
double newton ( double a, double b, double e);
int main()
{
cout << newton(-5,0,0.5e-5);
return 0;
}
double fun( double x)
{
return pow (x,2)+x-6;
}
double newton ( double a, double b, double e)
{
double x;
x = (a + b)/2;
cout << x << endl;
if ( abs (b-a) < e)
return x;
else
if (fun(a)*fun(x) < 0)
return newton(a,x,e);
else
return newton(x,b,e);
}
|
python:
1
2
3
4
5
6
7
8
9
10
11
12
|
def fun(x):
return x * * 2 + x - 6
def newton(a,b,e):
x = (a + b) / 2.0
if abs (b - a) < e:
return x
else :
if fun(a) * fun(x) < 0 :
return newton(a, x, e)
else :
return newton(x, b, e)
print newton( - 5 , 0 , 5e - 5 )
|
以上为个人经验,希望能给大家一个参考,也希望大家多多支持服务器之家。如有错误或未考虑完全的地方,望不吝赐教。
原文链接:https://blog.csdn.net/sharkandshark/article/details/83625839