前言
Python一般使用Matplotlib制作统计图形,用它自己的说法是‘让简单的事情简单,让复杂的事情变得可能'。用它可以制作折线图,直方图,条形图,散点图,饼图,谱图等等你能想到的和想不到的统计图形,这些图形可以导出为多种具有出版质量的格式。此外,它和ipython结合使用,确实方便,谁用谁知道!本文将介绍利用python中的matplotlib画一颗心,感兴趣的朋友们下面来一起看看吧。
安装matplotlib
首先要安装matplotlib
pip install matplotlib
windows用户可以去官网下载安装。官网看到matpltlib的作者John Hunter (1968-2012)刚去世不久,在此感谢他创造了这样一个强大的绘图工具。
上代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
#!/usr/bin/env python3
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
def heart_3d(x,y,z):
return (x * * 2 + ( 9 / 4 ) * y * * 2 + z * * 2 - 1 ) * * 3 - x * * 2 * z * * 3 - ( 9 / 80 ) * y * * 2 * z * * 3
def plot_implicit(fn, bbox = ( - 1.5 , 1.5 )):
''' create a plot of an implicit function
fn ...implicit function (plot where fn==0)
bbox ..the x,y,and z limits of plotted interval'''
xmin, xmax, ymin, ymax, zmin, zmax = bbox * 3
fig = plt.figure()
ax = fig.add_subplot( 111 , projection = '3d' )
A = np.linspace(xmin, xmax, 100 ) # resolution of the contour
B = np.linspace(xmin, xmax, 40 ) # number of slices
A1, A2 = np.meshgrid(A, A) # grid on which the contour is plotted
for z in B: # plot contours in the XY plane
X, Y = A1, A2
Z = fn(X, Y, z)
cset = ax.contour(X, Y, Z + z, [z], zdir = 'z' , colors = ( 'r' ,))
# [z] defines the only level to plot
# for this contour for this value of z
for y in B: # plot contours in the XZ plane
X, Z = A1, A2
Y = fn(X, y, Z)
cset = ax.contour(X, Y + y, Z, [y], zdir = 'y' , colors = ( 'red' ,))
for x in B: # plot contours in the YZ plane
Y, Z = A1, A2
X = fn(x, Y, Z)
cset = ax.contour(X + x, Y, Z, [x], zdir = 'x' ,colors = ( 'red' ,))
# must set plot limits because the contour will likely extend
# way beyond the displayed level. Otherwise matplotlib extends the plot limits
# to encompass all values in the contour.
ax.set_zlim3d(zmin, zmax)
ax.set_xlim3d(xmin, xmax)
ax.set_ylim3d(ymin, ymax)
plt.show()
if __name__ = = '__main__' :
plot_implicit(heart_3d)
|
效果是这个样子,挺有意思的:
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用python能带来一定的帮助,如果有疑问大家可以留言交流。