I used the following code to draw a scatterplot. How to increase the font size and change colour of x-axis and y-axis label?
我用下面的代码画了一个散点图。如何增加x轴和y轴标签的字体大小和改变颜色?
data=read.csv("data.csv")
plot(data$column1,data$column2,xlab="x axis", ylab="y axis", pch=19)
3 个解决方案
#1
27
To track down the correct parameters you need to go first to ?plot.default, which refers you to ?par and ?axis:
为了找到正确的参数,你需要首先进行?
plot(1, 1 ,xlab="x axis", ylab="y axis", pch=19,
col.lab="red", cex.lab=1.5, # for the xlab and ylab
col="green") # for the points
#2
37
Look at ?par
for the various graphics parameters.
看看这些不同的图形参数。
In general cex
controls size, col
controls colour. If you want to control the colour of a label, the par
is col.lab
, the colour of the axis annotations col.axis
, the colour of the main
text, col.main
etc. The names are quite intuitive, once you know where to begin.
一般cex控制尺寸,col控制颜色。如果你想要控制标签的颜色,par是col.lab,轴标注的颜色,轴,主文本的颜色,col.main等等,一旦你知道从哪里开始,这些名字就很直观。
For example
例如
x <- 1:10
y <- 1:10
plot(x , y,xlab="x axis", ylab="y axis", pch=19, col.axis = 'blue', col.lab = 'red', cex.axis = 1.5, cex.lab = 2)
If you need to change the colour / style of the surrounding box and axis lines, then look at ?axis
or ?box
, and you will find that you will be using the same parameter names within calls to box
and axis.
如果您需要更改周围的框和轴的颜色/样式,然后查看?轴或?box,您将发现您将使用相同的参数名称在调用到box和axis。
You have a lot of control to make things however you wish.
无论你多么希望,你都能控制自己。
eg
如
plot(x , y,xlab="x axis", ylab="y axis", pch=19, cex.lab = 2, axes = F,col.lab = 'red')
box(col = 'lightblue')
axis(1, col = 'blue', col.axis = 'purple', col.ticks = 'darkred', cex.axis = 1.5, font = 2, family = 'serif')
axis(2, col = 'maroon', col.axis = 'pink', col.ticks = 'limegreen', cex.axis = 0.9, font =3, family = 'mono')
Which is seriously ugly, but shows part of what you can control
这很难看,但是显示了你可以控制的部分?
#3
1
Taking DWins example.
以DWins例。
What I often do, particularly when I use many, many different plots with the same colours or size information, is I store them in variables I otherwise never use. This helps me keep my code a little cleaner AND I can change it "globally".
我经常做的事情,特别是当我使用许多不同的、具有相同颜色或大小信息的图时,我将它们存储在我从未使用过的变量中。这可以帮助我保持代码更简洁,并且可以“全局地”更改它。
E.g.
如。
clab = 1.5
cmain = 2
caxis = 1.2
plot(1, 1 ,xlab="x axis", ylab="y axis", pch=19,
col.lab="red", cex.lab=clab,
col="green", main = "Testing scatterplots", cex.main =cmain, cex.axis=caxis)
You can also write a function, doing something similar. But for a quick shot this is ideal. You can also store that kind of information in an extra script, so you don't have a messy plot script:
你也可以写一个函数,做一些类似的事情。但对于快速射击来说,这是理想的选择。你也可以在额外的脚本中存储这类信息,这样你就不会有一个混乱的脚本:
which you then call with setwd("") source("plotcolours.r")
然后调用setwd(“”)源(“plotcolor .r”)
in a file say called plotcolours.r you then store all the e.g. colour or size variables
在一个叫做plotcolor的文件中。然后存储所有的颜色或大小的变量。
clab = 1.5
cmain = 2
caxis = 1.2
for colours could use
颜色可以使用
darkred<-rgb(113,28,47,maxColorValue=255)
as your variable 'darkred' now has the colour information stored, you can access it in your actual plotting script.
由于您的变量“暗红色”现在已经存储了颜色信息,您可以在实际的绘图脚本中访问它。
plot(1,1,col=darkred)
#1
27
To track down the correct parameters you need to go first to ?plot.default, which refers you to ?par and ?axis:
为了找到正确的参数,你需要首先进行?
plot(1, 1 ,xlab="x axis", ylab="y axis", pch=19,
col.lab="red", cex.lab=1.5, # for the xlab and ylab
col="green") # for the points
#2
37
Look at ?par
for the various graphics parameters.
看看这些不同的图形参数。
In general cex
controls size, col
controls colour. If you want to control the colour of a label, the par
is col.lab
, the colour of the axis annotations col.axis
, the colour of the main
text, col.main
etc. The names are quite intuitive, once you know where to begin.
一般cex控制尺寸,col控制颜色。如果你想要控制标签的颜色,par是col.lab,轴标注的颜色,轴,主文本的颜色,col.main等等,一旦你知道从哪里开始,这些名字就很直观。
For example
例如
x <- 1:10
y <- 1:10
plot(x , y,xlab="x axis", ylab="y axis", pch=19, col.axis = 'blue', col.lab = 'red', cex.axis = 1.5, cex.lab = 2)
If you need to change the colour / style of the surrounding box and axis lines, then look at ?axis
or ?box
, and you will find that you will be using the same parameter names within calls to box
and axis.
如果您需要更改周围的框和轴的颜色/样式,然后查看?轴或?box,您将发现您将使用相同的参数名称在调用到box和axis。
You have a lot of control to make things however you wish.
无论你多么希望,你都能控制自己。
eg
如
plot(x , y,xlab="x axis", ylab="y axis", pch=19, cex.lab = 2, axes = F,col.lab = 'red')
box(col = 'lightblue')
axis(1, col = 'blue', col.axis = 'purple', col.ticks = 'darkred', cex.axis = 1.5, font = 2, family = 'serif')
axis(2, col = 'maroon', col.axis = 'pink', col.ticks = 'limegreen', cex.axis = 0.9, font =3, family = 'mono')
Which is seriously ugly, but shows part of what you can control
这很难看,但是显示了你可以控制的部分?
#3
1
Taking DWins example.
以DWins例。
What I often do, particularly when I use many, many different plots with the same colours or size information, is I store them in variables I otherwise never use. This helps me keep my code a little cleaner AND I can change it "globally".
我经常做的事情,特别是当我使用许多不同的、具有相同颜色或大小信息的图时,我将它们存储在我从未使用过的变量中。这可以帮助我保持代码更简洁,并且可以“全局地”更改它。
E.g.
如。
clab = 1.5
cmain = 2
caxis = 1.2
plot(1, 1 ,xlab="x axis", ylab="y axis", pch=19,
col.lab="red", cex.lab=clab,
col="green", main = "Testing scatterplots", cex.main =cmain, cex.axis=caxis)
You can also write a function, doing something similar. But for a quick shot this is ideal. You can also store that kind of information in an extra script, so you don't have a messy plot script:
你也可以写一个函数,做一些类似的事情。但对于快速射击来说,这是理想的选择。你也可以在额外的脚本中存储这类信息,这样你就不会有一个混乱的脚本:
which you then call with setwd("") source("plotcolours.r")
然后调用setwd(“”)源(“plotcolor .r”)
in a file say called plotcolours.r you then store all the e.g. colour or size variables
在一个叫做plotcolor的文件中。然后存储所有的颜色或大小的变量。
clab = 1.5
cmain = 2
caxis = 1.2
for colours could use
颜色可以使用
darkred<-rgb(113,28,47,maxColorValue=255)
as your variable 'darkred' now has the colour information stored, you can access it in your actual plotting script.
由于您的变量“暗红色”现在已经存储了颜色信息,您可以在实际的绘图脚本中访问它。
plot(1,1,col=darkred)