[cf contest 893(edu round 33)] F - Subtree Minimum Query
time limit per test6 seconds
memory limit per test512 megabytes
inputstandard input
outputstandard output
You are given a rooted tree consisting of n vertices. Each vertex has a number written on it; number ai is written on vertex i.
Let's denote d(i, j) as the distance between vertices i and j in the tree (that is, the number of edges in the shortest path from i to j). Also let's denote the k-blocked subtree of vertex x as the set of vertices y such that both these conditions are met:
- x is an ancestor of y (every vertex is an ancestor of itself);
- d(x, y) ≤ k.
You are given m queries to the tree. i-th query is represented by two numbers xi and ki, and the answer to this query is the minimum value of aj among such vertices j such that j belongs to ki-blocked subtree of xi.
Write a program that would process these queries quickly!
Note that the queries are given in a modified way.
InputThe first line contains two integers n and r (1 ≤ r ≤ n ≤ 100000) — the number of vertices in the tree and the index of the root, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the numbers written on the vertices.
Then n - 1 lines follow, each containing two integers x and y (1 ≤ x, y ≤ n) and representing an edge between vertices x and y. It is guaranteed that these edges form a tree.
Next line contains one integer m (1 ≤ m ≤ 106) — the number of queries to process.
Then m lines follow, i-th line containing two numbers pi and qi, which can be used to restore i-th query (1 ≤ pi, qi ≤ n).
i-th query can be restored as follows:
Let last be the answer for previous query (or 0 if i = 1). Then xi = ((pi + last) mod n) + 1, and ki = (qi + last) mod n.
OutputPrint m integers. i-th of them has to be equal to the answer to i-th query.
Exampleinput5 21 3 2 3 52 35 13 44 121 22 3output25
我们对于树上的每一个节点开一个线段树(其实是可持久化的)。
每棵线段树都是一个[1..maxdepth]的按照绝对深度来建的线段树。
那么,对于每一个节点x,可以把所以它的子节点的线段树合并到它上面去。
但是这需要可持久化。因为当前节点的信息也要用到。如果不可持久化,可能会导致当前节点的地址在其他线段树里面存在。
实际上,每个地址只存在与一棵线段树中。
然后,由于父子节点之间的线段树只有1条链不同,所以要新建logn个节点。
总共有n-1对父子关系,所以空间为O(nlogn)。
时间复杂度为O(mlogn)。注意强制在线。
code:
#include <cstdio> #include <cstring> #include <algorithm> typedef long long LL; using namespace std; void OJ() { #ifndef ONLINE_JUDGE freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #endif } namespace fastIO { #define gec(c) getchar(c) #define puc(c) putchar(c) char ch; inline int read() { ,f=; ch=getchar(); ') { if (ch=='-') f=-f; ch=gec(); } ') { x=(x<<)+(x<<)+(ch^); ch=gec(); } return x*f; } ]; template <class T> inline void write(T x) { ) { puc('); return; } ) x=-x,puc('-'); ; x; x/=) nnn[++ttt]=x%; ); } inline void newline () { puc('\n'); } } using namespace fastIO; ,inf=2e9; int n,q,tot,lim; ],son[N<<],dep[N]; struct node { node* l,* r; int v; node () { l=r=; v=inf; } } *ro[N]; #define M ((l)+(r)>>1) inline void refresh (node* c) { c->v=inf; if (c->l) c->v=min(c->v,c->l->v); if (c->r) c->v=min(c->v,c->r->v); } inline void setup (node* &c,int l,int r,int x,int v) { c=new node(); if (l==r) { c->v=v; return; } if (x<=M) setup(c->l,l,M,x,v); ,r,x,v); refresh(c); } inline node* merge (node* x,node* y) { if (!x||!y) return x?x:y; node* ret=new node(); ret->l=merge(x->l,y->l); ret->r=merge(x->r,y->r); ret->v=min(x->v,y->v); return ret; } inline int reply (node* u,int l,int r,int x,int y) { if (!u) return inf; if (x<=l&&r<=y) return u->v; if (y<=M) return reply(u->l,l,M,x,y); else ,r,x,y); else ,r,x,y)); } void add (int x,int y) { nxt[++tot]=lnk[x],lnk[x]=tot,son[tot]=y; } void dfs (int x,int p) { setup(ro[x],,n,dep[x]=dep[p]+,a[x]); lim=max(lim,dep[x]); for (int j=lnk[x]; j; j=nxt[j]) { if (son[j]==p) continue; dfs(son[j],x); ro[x]=merge(ro[x],ro[son[j]]); } } int main() { OJ(); ; n=read(),rot=read(); ; i<=n; ++i) { a[i]=read(),ro[i]=; } ; i<n; ++i) { x=read(),y=read(); add(x,y),add(y,x); } dep[]=lim=,dfs(rot,); q=read(); for ( ; q; --q) { x=read(),y=read(); x=(x+ans)%n+,y=(y+ans)%n; ans=reply(ro[x],,n,dep[x],min(lim,dep[x]+y)); write(ans),newline(); } ; }