Machine learning
Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data. Such algorithms operate by building a model based on inputs and using that to make predictions or decisions, rather than following only explicitly programmed instructions.
机器学习是一个科学规律,探索可以从数据中学习的算法的构造和学习的科学规律。这种算法通过建立一个模型来运作,该模型是基于输入并且使用它来做预测或者决策,而非遵循确切的编程指导。
Machine learning can be considered a subfield of computer science and statistics. It has strong ties to artificial intelligence and optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is infeasible. Example applications include spam filtering, optical character recognition (OCR), search engines and computer vision. Machine learning is sometimes conflated with data mining, although that focuses more on exploratory data analysis. Machine learning and pattern recognition "can be viewed as two facets of the same field."
机器学习可以被认为是计算机科学和统计学的子领域。它与人工智能和最优化有很强的联系,它们为该领域传输了方法、理论和应用域。机器学习应用在广泛的计算任务中,而其中明确的设计和编程、基于规则的算法是不可行的。样例应用包括垃圾邮件过滤、字母识别、搜索引擎和计算机视觉。机器学习有时跟数据挖掘联系在一起,虽然后者更关注数据分析。机器学习和图像识别“可以被视为相同领域的两个方面”.
选择的文章
Selected article
A random forest is an ensemble model for classification or regression, that consists of a multitude of decision trees. The predictions of a random forest are averages of the predictions of the individual trees. Random forests correct for decision trees' habit of overfitting to their training set.
随机森林是分类或回归的集合模型,它们包含了许多的决策树。随机森林的预测是各个树的预测值的平均值。随机森林修正了决策树的坏习惯——对训练集的过度拟合。
The algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler. The method combines Breiman's "bagging" idea and random selection of features: each tree gets to see a bootstrap sample of the training set and a random sample of the features, in order to obtain uncorrelated trees.
引入随机森林的算法是由Leo Breiman和Adele Cutler所开发的。该方法结合了Breiman的“装袋子”观点和特征随机选择:每个树都会看到训练集的自举样本和特征的随机样本,从而获得不相关的树。
选择的自画像
Selected biography
Michael Irwin Jordan (born 1956) is an American scientist, Professor at the University of California, Berkeley and leading researcher in machine learning and artificial intelligence. He has worked on recurrent neural networks, Bayesian networks, and variational methods, and co-invented latent Dirichlet allocation.
Michael Irwin Jordan(1956年出生)是一个美国科学家,加州大学伯克利分校的教授,并且是在机器学习和人工智能方面的首席专家。他钻研递归神经网络、贝叶斯网络和变分方法,并且合作开发了隐含狄利克雷分布。
新闻上
In the news
More current events...
Current events on Wikinews
选择的图片
Selected picture
Credit: User:Alisneaky
The effect of the kernel trick in a
classifier. On the left, a non-linear decision boundary has been learned by a
"kernelized" classifier. This simulates the effect of a feature map φ, that transforms the problem space into one
where the decision boundary is linear (right).
内核方法(核函数)的效果是一个分类器。左侧,一个非线性决策边界由一个“核化”分类器来进行学习。它模拟了一个特征映射φ效果,它将问题空间变换到决策边界为线性的空间。
你知道吗?
Did you know?
- ... that the kernel perceptron was the first learning algorithm to employ the kernel trick, already in
1964?核感知器是第一个应用核函数的学习算法,在1964年? - ... that AltaVista was the first web search engine to employ machine-learned ranking of its search results?AltaVista是第一个应用机器学习对搜索结果进行评分的网络搜索引擎?
- ... that the group method
of data handling,
invented in the USSR, was one of the first algorithms capable of training deep neural networks (ca. 1971)?数据处理的组合方法,在苏联发明的,是第一类能够训练深度神经网络的算法之一(1971年)?
目录
Categories
▼ Machine learning机器学习
► Applied machine learning应用机器学习
► Artificial neural networks人工神经网络
► Bayesian networks贝叶斯网络
► Classification algorithms分类算法
► Cluster analysis聚类分析
► Computational learning theory计算学习理论
► Artificial intelligence conferences人工智能会议
► Signal processing conferences信号处理会议
► Data mining and machine learning software数据挖掘和机器学习软件
► Datasets in machine learning机器学习数据集
► Dimension reduction维度下降
► Ensemble learning集成学习
► Evolutionary algorithms进化算法
► Genetic programming遗传算法
► Inductive logic programming归纳逻辑程序
► Kernel methods for machine learning机器学习的核方法
► Latent variable models隐含变量模型
► Learning in computer vision机器视觉的学习
► Log-linear models对数线性模型
► Loss functions损失函数
► Machine learning algorithms机器学习算法
► Machine learning portal机器学习门户
► Machine learning task机器学习任务
► Markov models马尔科夫模型
► Machine learning researchers机器学习研究者
► Semisupervised learning半监督学习
► Statistical natural language processing统计学自然语言处理
► Structured prediction结构化预测
► Supervised learning监督学习
► Support vector machines支持向量机
► Unsupervised learning非监督学习
讨论主题热点
Topics
Portal:Machine learning/Topics
Related portals相关门户
Computer science计算科学
Robotics机器人
Statistics统计学
维基项目
WikiProjects
-
Computer
science计算科学 - Computing计算
- Robotics机器人
- Statistics统计学
要做的事(公开任务)
Things to do
Portal:Machine learning/Opentask
维基媒介
Wikimedia
Portal:Machine learning/Wikimedia
- What are portals?什么是门户?
-
List of
portals门户列表
<img
src="//en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1"
alt="" title="" width="1" height="1"
style="border: none; position: absolute;" />
Retrieved from "https://en.wikipedia.org/w/index.php?title=Portal:Machine_learning&oldid=676364806"
https://en.wikipedia.org/wiki/Portal:Machine_learning
Portal:Machine learning机器学习:门户的更多相关文章
-
[原创]Machine Learning/机器学习 文章合集
转载请注明出处:https://www.codelast.com/ ➤ 用人话解释机器学习中的Logistic Regression(逻辑回归) ➤ 如何防止softmax函数上溢出(overflow ...
-
machine learning----->;Amazon Machine Learning机器学习平台
参考资料: 1.如何使用Amazon Machine Learning平台构建你的机器学习预测模型 2.
-
【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议
Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...
-
Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
-
Machine Learning:机器学习算法
原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学 ...
-
[Machine Learning] 机器学习常见算法分类汇总
声明:本篇博文根据http://www.ctocio.com/hotnews/15919.html整理,原作者张萌,尊重原创. 机器学习无疑是当前数据分析领域的一个热点内容.很多人在平时的工作中都或多 ...
-
When Cyber Security Meets Machine Learning 机器学习 安全分析 对于安全领域的总结很有用 看未来演进方向
链接:http://ucys.ugr.es/jnic2016/docs/MachineLearning_LiorRokachJNIC2016.pdf https://people.eecs.berke ...
-
【Machine Learning&#183;机器学习】决策树之ID3算法(Iterative Dichotomiser 3)
目录 1.什么是决策树 2.如何构造一棵决策树? 2.1.基本方法 2.2.评价标准是什么/如何量化评价一个特征的好坏? 2.3.信息熵.信息增益的计算 2.4.决策树构建方法 3.算法总结 @ 1. ...
-
Data Leakage in Machine Learning 机器学习训练中的数据泄漏
refer to: https://www.kaggle.com/dansbecker/data-leakage There are two main types of leakage: Leaky ...
随机推荐
-
JQuery学习思维导图版
常用UI资源 参考资料:Jquery教程 dataTables:教程 中文教程 Wizard:教程 Jquery UI demos:教程 selectmenu:教程 jquery-slider:教程 ...
-
Node.js开发利器
开发工具 WebStorm,毫无疑问非他莫属,跨平台,强大的代码提示,支持Nodejs调试,此外还支持vi编辑模式,这点我很喜欢. 做些小型项目用Sublime Text. Browserify:将你 ...
-
Java主函数定义
public static void main(String[] args){} public: main主方法是由jvm来调用的,jvm实际也是一个程序,为了保证jvm能够在任何情况下来调用主函数. ...
-
网络之AFNetsorking
AFNetsorking作为功能全面的网络第三方,既通俗好用又与时俱进-及时的更新使用了NSURLSession,不得不爱. AFNetsorking使用: 1,AFNetsorking GET请求 ...
- C语言中运算符的口决
-
C# string.Format格式化时间或货币
1.格式化货币(跟系统的环境有关,中文系统默认格式化人民币,英文系统格式化美元) string.Format("{0:C}",0.2) 结果为:¥0.20 (英文操作系统结果:$0 ...
-
什么是MemCache
Memcache是一个高性能的分布式的内存对象缓存系统,通过在内存里维护一个统一的巨大的hash表,它能够用来存储各种格式的数据,包括图像.视频.文件以及数据库检索的结果等.简单的说就是将数据调用到内 ...
-
Cocos2d-x3.0模版容器具体解释之二:cocos2d::Map&;lt;K,V&;gt;
1.概述: 版本号: v3.0 beta 语言: C++ 定义在 "COCOS2DX_ROOT/cocos/base" 路径下的 "CCMap.h" 的头文件里 ...
-
[Unity Shader]Shader前述
什么是Shader Shader,也就是着色器,它的工作就是读取你的网格并渲染在屏幕上.Shader可以定义一些属性,你会用它来影响渲染模型时所显示的效果.当存储了这些属性的设置时,就是一个Mat ...
-
Broker节点
在druid集群环境中 broker节点的作用是查询.它知道metadata 通过zookeeper发送到了集群中的哪个节点,从而能够准确的查询到.broker也把各个节点的结果汇聚到一个节点中.On ...