如何用matplotlib在python中绘制3D密度图?

时间:2022-09-10 22:26:53

I have a large dataset of (x,y,z) protein positions and would like to plot areas of high occupancy as a heatmap. Ideally the output should look similiar to the volumetric visualisation below, but I'm not sure how to achieve this with matplotlib.

我有一个大的数据集(x,y,z)蛋白质的位置,并且想要把高用房的区域划分为一个热图。理想情况下,输出应该与下面的容量可视化相类似,但是我不确定如何用matplotlib实现这一点。

如何用matplotlib在python中绘制3D密度图?

My initial idea was to display my positions as a 3D scatter plot and color their density via a KDE. I coded this up as follows with test data:

我最初的想法是将我的位置显示为一个三维的散点图,并通过KDE来显示它们的密度。我用测试数据将其编码如下:

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D 

mu, sigma = 0, 0.1 
x = np.random.normal(mu, sigma, 1000)
y = np.random.normal(mu, sigma, 1000)
z = np.random.normal(mu, sigma, 1000)

xyz = np.vstack([x,y,z])
density = stats.gaussian_kde(xyz)(xyz) 

idx = density.argsort()
x, y, z, density = x[idx], y[idx], z[idx], density[idx]

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, c=density)
plt.show()

This works well! However, my real data contains many thousands of data points and calculating the kde and the scatter plot becomes extremely slow.

这是好!然而,我的真实数据包含了数千个数据点,计算kde和散点图变得非常慢。

A small sample of my real data:

我的真实数据的一个小样本:

如何用matplotlib在python中绘制3D密度图?

My research would suggest that a better option is to evaluate the gaussian kde on a grid. I’m just not sure how to this in 3D:

我的研究表明一个更好的选择是在网格上评估高斯kde。我只是不知道怎么用3D技术

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D 

mu, sigma = 0, 0.1 
x = np.random.normal(mu, sigma, 1000)
y = np.random.normal(mu, sigma, 1000)

nbins = 50

xy = np.vstack([x,y])
density = stats.gaussian_kde(xy) 

xi, yi = np.mgrid[x.min():x.max():nbins*1j, y.min():y.max():nbins*1j]
di = density(np.vstack([xi.flatten(), yi.flatten()]))

fig = plt.figure()
ax = fig.add_subplot(111)
ax.pcolormesh(xi, yi, di.reshape(xi.shape))
plt.show() 

1 个解决方案

#1


29  

Thanks to mwaskon - for suggesting the mayavi library.

感谢mwaskon——建议mayavi图书馆。

I recreated the density scatter plot in mayavi as follows:

我重新创建了mayavi的密度散点图如下:

import numpy as np
from scipy import stats
from mayavi import mlab

mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)
z = 10*np.random.normal(mu, sigma, 5000)

xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)
density = kde(xyz)

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
pts = mlab.points3d(x, y, z, density, scale_mode='none', scale_factor=0.07)
mlab.axes()
mlab.show()

如何用matplotlib在python中绘制3D密度图?

Setting the scale_mode to 'none' prevents glyphs from being scaled in proportion to the density vector. In addition for large datasets, I disabled scene rendering and used a mask to reduce the number of points.

将scale_mode设置为“none”可以防止字形按比例缩放到密度向量。此外,对于大型数据集,我禁用了场景渲染,并使用一个掩码来减少点的数量。

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
figure.scene.disable_render = True

pts = mlab.points3d(x, y, z, density, scale_mode='none', scale_factor=0.07) 
mask = pts.glyph.mask_points
mask.maximum_number_of_points = x.size
mask.on_ratio = 1
pts.glyph.mask_input_points = True

figure.scene.disable_render = False 
mlab.axes()
mlab.show()

Next, to evaluate the gaussian kde on a grid:

接下来,对网格上的高斯kde进行评价:

import numpy as np
from scipy import stats
from mayavi import mlab

mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)    
z = 10*np.random.normal(mu, sigma, 5000)

xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)

# Evaluate kde on a grid
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]]) 
density = kde(coords).reshape(xi.shape)

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')

grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min = density.min()
max=density.max()
mlab.pipeline.volume(grid, vmin=min, vmax=min + .5*(max-min))

mlab.axes()
mlab.show()

如何用matplotlib在python中绘制3D密度图?

As a final improvement I sped up the evaluation of kensity density function by calling the kde function in parallel.

作为最后的改进,我通过调用kde函数来加快对kensity密度函数的评估。

import numpy as np
from scipy import stats
from mayavi import mlab
import multiprocessing

def calc_kde(data):
    return kde(data.T)

mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)
z = 10*np.random.normal(mu, sigma, 5000)

xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)

# Evaluate kde on a grid
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]]) 

# Multiprocessing
cores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes=cores)
results = pool.map(calc_kde, np.array_split(coords.T, 2))
density = np.concatenate(results).reshape(xi.shape)

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')

grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min = density.min()
max=density.max()
mlab.pipeline.volume(grid, vmin=min, vmax=min + .5*(max-min))

mlab.axes()
mlab.show()

#1


29  

Thanks to mwaskon - for suggesting the mayavi library.

感谢mwaskon——建议mayavi图书馆。

I recreated the density scatter plot in mayavi as follows:

我重新创建了mayavi的密度散点图如下:

import numpy as np
from scipy import stats
from mayavi import mlab

mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)
z = 10*np.random.normal(mu, sigma, 5000)

xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)
density = kde(xyz)

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
pts = mlab.points3d(x, y, z, density, scale_mode='none', scale_factor=0.07)
mlab.axes()
mlab.show()

如何用matplotlib在python中绘制3D密度图?

Setting the scale_mode to 'none' prevents glyphs from being scaled in proportion to the density vector. In addition for large datasets, I disabled scene rendering and used a mask to reduce the number of points.

将scale_mode设置为“none”可以防止字形按比例缩放到密度向量。此外,对于大型数据集,我禁用了场景渲染,并使用一个掩码来减少点的数量。

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')
figure.scene.disable_render = True

pts = mlab.points3d(x, y, z, density, scale_mode='none', scale_factor=0.07) 
mask = pts.glyph.mask_points
mask.maximum_number_of_points = x.size
mask.on_ratio = 1
pts.glyph.mask_input_points = True

figure.scene.disable_render = False 
mlab.axes()
mlab.show()

Next, to evaluate the gaussian kde on a grid:

接下来,对网格上的高斯kde进行评价:

import numpy as np
from scipy import stats
from mayavi import mlab

mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)    
z = 10*np.random.normal(mu, sigma, 5000)

xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)

# Evaluate kde on a grid
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]]) 
density = kde(coords).reshape(xi.shape)

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')

grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min = density.min()
max=density.max()
mlab.pipeline.volume(grid, vmin=min, vmax=min + .5*(max-min))

mlab.axes()
mlab.show()

如何用matplotlib在python中绘制3D密度图?

As a final improvement I sped up the evaluation of kensity density function by calling the kde function in parallel.

作为最后的改进,我通过调用kde函数来加快对kensity密度函数的评估。

import numpy as np
from scipy import stats
from mayavi import mlab
import multiprocessing

def calc_kde(data):
    return kde(data.T)

mu, sigma = 0, 0.1 
x = 10*np.random.normal(mu, sigma, 5000)
y = 10*np.random.normal(mu, sigma, 5000)
z = 10*np.random.normal(mu, sigma, 5000)

xyz = np.vstack([x,y,z])
kde = stats.gaussian_kde(xyz)

# Evaluate kde on a grid
xmin, ymin, zmin = x.min(), y.min(), z.min()
xmax, ymax, zmax = x.max(), y.max(), z.max()
xi, yi, zi = np.mgrid[xmin:xmax:30j, ymin:ymax:30j, zmin:zmax:30j]
coords = np.vstack([item.ravel() for item in [xi, yi, zi]]) 

# Multiprocessing
cores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes=cores)
results = pool.map(calc_kde, np.array_split(coords.T, 2))
density = np.concatenate(results).reshape(xi.shape)

# Plot scatter with mayavi
figure = mlab.figure('DensityPlot')

grid = mlab.pipeline.scalar_field(xi, yi, zi, density)
min = density.min()
max=density.max()
mlab.pipeline.volume(grid, vmin=min, vmax=min + .5*(max-min))

mlab.axes()
mlab.show()