【CodeForces 803 C】Maximal GCD(GCD+思维)

时间:2022-09-10 21:08:17

You are given positive integer number n. You should create such strictly increasingsequence of k positive numbers a1, a2, ..., ak, that their sum is equal to n and greatest common divisor is maximal.

Greatest common divisor of sequence is maximum of such numbers that every element of sequence is divisible by them.

If there is no possible sequence then output -1.

Input

The first line consists of two numbers n and k (1 ≤ n, k ≤ 1010).

Output

If the answer exists then output k numbers — resulting sequence. Otherwise output -1. If there are multiple answers, print any of them.

Examples

Input
6 3
Output
1 2 3
Input
8 2
Output
2 6
Input
5 3
Output
-1
题意:

给出正整数n。我们要创建k个正数1,  2,...,  k的严格增加序列,它们的和等于n,并使其最大公约数是最大的。

序列的最大公约数是:序列的每个元素都可以被它们整除。

如果没有可能的序列,则输出-1。

思路:

(1) 若k个数字的gcd为A,那么n一定可以整除A,所以考虑从n的因子里选出这个A来,先求出k个数字可以表示的最小的数,即 1+2+3+...+k = k(k+1)/2

(2) 设a1 a2 ... ak为解,那么a1+a2+...+ak=n,设gcd(a1,a2...,ak)=A,那么 a1=A*b1 ,a2=A*b2 … ak=A*bk。

(3) 那么gcd(b1,b2,...,bk)=1,且A*(b1+b2+...+bk)=n,所以n%A=0,说明A为n的因数。

ps:n/A = b1+b2+...+bk

(1) 首先因为n≤1010,所以通过 k(k+1)/2 可知:k最大为141420。

(2) 然后处理出所有n的因数,因数从大往小找,找到第一个符合 n/A≥k(k+1)/2 的因数即可。反正b1,b2,…,bk它们的gcd是1,直接令前k-1个数分别是1~k-1,第k项为 (n/A-前k项的总和)

(3) 将最后的答案全部乘A即可!

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll A[],cnt;
//A[]储存n的因子 cnt为因子个数
void fact(ll n)
{
ll i;
for(i=,cnt=;i*i<=n;i++)
{
if(n%i==)
{
if(n%i!=i)
{
A[++cnt]=i;
A[++cnt]=n/i;
}
else A[++cnt]=i;
}
}
}
int main()
{
//k最大为141420
ll n,k,i,j;
while(scanf("%lld%lld",&n,&k)!=EOF)
{
ll fk=k*(k+)/; //k个数所能组成的最小值
if(k>)
printf("-1\n");
else if(n<fk)
printf("-1\n");
else
{
fact(n);
sort(A+,A+cnt+);
ll ksum;
int flag=;
for(i=cnt;i>;i--)
{
ksum=n/A[i]; //k个数的总和
if(ksum-fk>=)
{
flag=;
ll sum=; //前k-1个数的总和
for(j=;j<k;j++)
{
printf("%lld ",j*A[i]);
sum+=j;
}
printf("%lld\n",A[i]*(ksum-sum));
break;
}
}
if(!flag)printf("-1\n");
}
}
return ;
}

【CodeForces 803 C】Maximal GCD(GCD+思维)的更多相关文章

  1. Codeforces 979 D&period; Kuro and GCD and XOR and SUM&lpar;异或和,01字典树)

    Codeforces 979 D. Kuro and GCD and XOR and SUM 题目大意:有两种操作:①给一个数v,加入数组a中②给出三个数x,k,s:从当前数组a中找出一个数u满足 u ...

  2. codeforces 803C Maximal GCD&lpar;GCD数学&rpar;

    Maximal GCD 题目链接:http://codeforces.com/contest/803/problem/C 题目大意: 给你n,k(1<=n,k<=1e10). 要你输出k个 ...

  3. Codeforces 305B:Continued Fractions(思维&plus;gcd)

    http://codeforces.com/problemset/problem/305/B 题意:就是判断 p / q 等不等于那条式子算出来的值. 思路:一开始看到 1e18 的数据想了好久还是不 ...

  4. codeforces 798 C&period; Mike and gcd problem(贪心&plus;思维&plus;数论)

    题目链接:http://codeforces.com/contest/798/problem/C 题意:给出一串数字,问如果这串数字的gcd大于1,如果不是那么有这样的操作,删除ai, ai + 1 ...

  5. 【codeforces 803C】Maximal GCD

    [题目链接]:http://codeforces.com/contest/803/problem/C [题意] 给你一个数字n;一个数字k; 让你找一个长度为k的序列; 要求这个长度为k的序列的所有数 ...

  6. codeforces 1030D Vasya and Triangle【思维&plus;gcd】

    题目:戳这里 题意:选出三个点构成三角形,要求面积为n*m/k. 解题思路:因为三个点的坐标都是正整数,根据三角形面积公式(x1*(y2-y3)+x2*(y3-y1)+x3*(y1-y2))/2=n* ...

  7. 【codeforces 798C】Mike and gcd problem

    [题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ...

  8. &lbrack;Codeforces 364D&rsqb;Ghd&lpar;随机算法&plus;gcd&rpar;

    [Codeforces 364D]Ghd(随机算法) 题面 给出n个正整数,在其中选出n/2(向上取整)个数,要求这些数的最大公约数最大,求最大公约数的最大值 分析 每个数被选到的概率\(\geq \ ...

  9. codeforces 1058D&period;Vasya and Triangle &lpar;gcd&rpar;

    <题目链接> <转载于  >>> > 题目大意: 给出n.m.k.求一个三角形使它的面积等于n*m/k  并且这个三角形的三个顶点所在的坐标为整数点,且顶点满 ...

随机推荐

  1. BZOJ1149&lbrack;CTSC2007&rsqb;风玲Mobiles

    Description Input Output 输出仅包含一个整数.表示最少需要多少次交换能使风铃满足Ike的条件.如果不可能满足,输出-1. Sample Input 6 2 3 -1 4 5 6 ...

  2. php组合

    为了提高代码的复用性,降低代码的耦合(组合实现的两种方式) 模式一: <?php //组合模式一 class Person{ public function eat(){ echo " ...

  3. C&num;实现:给定任意要给字符串,输出所有可能的回文的子字符串集合。

    class Program { static void Main(string[] args) { string testStr = "sdfadfdsfadfdsfsdf"; i ...

  4. HDU 1251 Trie树模板题

    1.HDU 1251 统计难题  Trie树模板题,或者map 2.总结:用C++过了,G++就爆内存.. 题意:查找给定前缀的单词数量. #include<iostream> #incl ...

  5. poj 4618 暴力

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4618 #include <cstdio> #include <cmath> # ...

  6. 转载Spring IntrospectorCleanupListener

    "在服务器运行过程中,Spring不停的运行的计划任务和OpenSessionInViewFilter,使得Tomcat反复加载对象而产生框架并用时可能产生的内存泄漏,则使用Introspe ...

  7. 积跬步,聚小流------关于UML类图

    UML的存在 类图是使用频率比較高的UML图,它用于描写叙述系统中所含的类以及它们之间的相互关系,帮助人们简化对系统的理解,也是系统分析和设计阶段的重要产物,也是系统编码和測试的重要类型根据. UML ...

  8. 移动商城第八篇【添加商品之基本属性和大字段数据(FCK文本编辑器)】

    添加商品 修改对应的超链接url,controller转发到对应的JSP页面 <a href="${path}/item/toAddItem.do" class=" ...

  9. python笔记一(语言简介、解释器、输入输出)

    一.python语言简介 一顿狂吹python目前有多火.多NB,哈哈哈,不过用起来心情确实很舒畅. 解释性语言:缺点,运行速度慢. 二.python解释器 与C.C++.java不同,以上都需要先将 ...

  10. Matlab以MEX方式调用C源代码

    #include "mex.h" // 使用MEX文件必须包含的头文件 // 执行具体工作的C函数 double add(double x, double y) { return ...